×

zbMATH — the first resource for mathematics

Non-connected reductive groups. (Groupes réductifs non connexes.) (French) Zbl 0846.20040
Let \(G\) be a non-connected reductive algebraic group defined over a finite field \(\mathbb{F}_q\), with Frobenius map \(F\). The authors develop a Deligne-Lusztig theory for the complex characters of \(G^F\). They base their investigations on the papers of Malle, Spaltenstein, Steinberg and others [cf. P. Deligne and G. Lusztig, Ann. Math., II. Ser. 103, 103-161 (1976; Zbl 0336.20029); G. Malle, J. Algebra 159, No. 1, 64-97 (1993; Zbl 0812.20024); N. Spaltenstein, Classes unipotentes et sous-groupes de Borel (Lect. Notes Math. 946, 1982; Zbl 0486.20025); R. Steinberg, Mem. Am. Math. Soc. 80 (1968; Zbl 0164.02902)].

MSC:
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] T. ASAI , The unipotent class functions of exceptional groups over finite fields (Comm. in Algebra, Vol. 22, n^\circ 12, 1984 , pp. 2729-2857). MR 86a:20046 | Zbl 0547.20037 · Zbl 0547.20037 · doi:10.1080/00927878408823130
[2] M. BROUÉ , G. MALLE et J. MICHEL , Generic blocks of finite reductive groups (Astérisque, Vol. 212, 1993 , pp. 7-92). MR 95d:20072 | Zbl 0843.20012 · Zbl 0843.20012
[3] P. DELIGNE et G. LUSZTIG , Representations of reductive groups over finite fields (Annals of Mathematics, n^\circ 103, 1976 , pp. 103-161). MR 52 #14076 | Zbl 0336.20029 · Zbl 0336.20029 · doi:10.2307/1971021
[4] F. DIGNE , Shintani-Descent and L Functions on Deligne-Lusztig Varieties (Proceedings of Symposia in Pure Mathematics, Vol. 47, part 1, pp. 61-68). MR 89b:20083 | Zbl 0657.20036 · Zbl 0657.20036
[5] F. DIGNE et J. MICHEL , Fonctions L des variétés de Deligne-Lusztig et descente de Shintani (Mémoires de la Société Mathématique de France, n^\circ 20, 1985 ). Numdam | MR 87h:20071 | Zbl 0608.20027 · Zbl 0608.20027 · numdam:MSMF_1985_2_20__1_0 · eudml:94859
[6] F. DIGNE et J. MICHEL , Representation of finite groups of Lie type (London Math. Soc. Student Texts, n^\circ 21, Cambridge University Press, 1991 ). MR 92g:20063 | Zbl 0815.20014 · Zbl 0815.20014
[7] F. DIGNE et J. MICHEL , Lusztig Functor and Shintani Descent (Rapports de Recherche du L.M.E.N.S., n^\circ 2, Publications du D.M.I., E.N.S., Paris, 1989 ).
[8] J. E. HUMPHREYS , Linear algebraic groups (Graduate Texts in Mathematics, n^\circ 21, Springer 1975 ). MR 53 #633 | Zbl 0325.20039 · Zbl 0325.20039
[9] G. LUSZTIG , Characters of reductive groups over a finite field (Annals of math. studies, n^\circ 107, Princeton University Press, 1984 ). MR 86j:20038 | Zbl 0556.20033 · Zbl 0556.20033
[10] G. MALLE , Generalized Deligne-Lusztig characters (Journal of Algebra, Vol. 159, n^\circ 1, 1993 , pp. 64-97). MR 94i:20025 | Zbl 0812.20024 · Zbl 0812.20024 · doi:10.1006/jabr.1993.1147
[11] T. SHOJI , Shintani descent for exceptional groups over a finite field (J. Fac. Sci. Uni. Tokyo Sect. 1A, n^\circ 34, 1987 , pp. 599-653). MR 88m:20086 | Zbl 0643.20019 · Zbl 0643.20019
[12] N. SPALTENSTEIN , Classes unipotentes et sous-groupes de Borel (Lecture Notes in Mathematics, n^\circ 946, Springer 1982 ). MR 84a:14024 | Zbl 0486.20025 · Zbl 0486.20025
[13] R. STEINBERG , Endomorphisms of linear algebraic groups (Memoirs of AMS, n^\circ 80, 1968 ). MR 37 #6288 | Zbl 0164.02902 · Zbl 0164.02902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.