×

Inequalities of Jackson type and multipliers in \(L_ p\). (English. Russian original) Zbl 0846.42004

Math. Notes 57, No. 4, 381-401 (1995); translation from Mat. Zametki 57, No. 4, 551-579 (1995).
The author’s aim is to determine the set of all collections of the parameters \((p, q, r, m, d)\) and vectors \(\alpha\in I^d\) such that the following inequality holds: \[ E_{n-1} (f)_q\leq Yn^{-r+ (1/p- 1/q)}+ \max_j |\Delta^m_{2\pi \alpha_j/ n} f^{(r)} |_p, \tag{1} \] where \(Y> 0\), \(f\in L^r_p\) and the further notations are traditional.
Among others he proves that if \(r\geq m\gamma\), \(1< p\leq \infty\), and \(1\leq q< \infty\), or if \(r> m\gamma+ \gamma\) and \(1\leq p, q\leq \infty\), where \(\gamma>0\), \(r,m,d\in \mathbb{N}\) and \(d\geq 1/\gamma\), then inequality (1) holds provided that \((\alpha_0, \dots, \alpha_d)\) has the property \[ \liminf_{k\in \mathbb{N}} k^\gamma \max_{1\leq \ell\leq d} |k\alpha_\ell/ \alpha_0 |>0, \tag{2} \] where \(|\alpha |:= \min(\{ \alpha \}, 1-\{ \alpha \})\), and \(\{ \alpha \}\) denotes the fractional part of \(\alpha\).
He also verifies that if \(0< r< m\gamma\) and \(1\leq p, q\leq \infty\), or if \(r= m\gamma\), \(d=1\), then there exists a vector \((\alpha_0, \dots, \alpha_d)\) satisfying (2) such that (1) fails.
Two theorems concerning the properties of multipliers in the spaces \(L_p\) are also proved.

MSC:

42A10 Trigonometric approximation
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
42A45 Multipliers in one variable harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Weyl, ”Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung,”Vierteljahrschrift d. Naturforscher Geselschaft in Zürich,62, 296–302 (1917). · JFM 46.0437.01
[2] S. B. Stechkin, ”The order of best approximations of continuous functions,”Izv. Akad. Nauk SSSR, Ser. Mat.,15, No. 3, 219–242 (1951).
[3] A. Zygmund,Trigonometric Series, Vol. 2 [Russian translation], Mir, Moscow (1965). · Zbl 0131.06703
[4] N. I. Akhiezer,Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).
[5] V. A. Yudin, ”Diophantine approximations in extremal problems inL 2,”Dokl. Akad. Nauk SSSR,251, No. 1, 54–57 (1980).
[6] V. A. Yudin, ”On Jackson’s theorems inL 2,”Mat. Zametki,41, No. 1, 43–47 (1987).
[7] V. A. Yudin and A. A. Yudin, ”Jackson’s theorems in L2,”Mat. Zametki,48, No. 4, 152–157 (1990). · Zbl 0737.42001
[8] A. Zygmund,Trigonometric Series, Vol. 1 [Russian translation], Mir, Moscow (1965). · Zbl 0131.06703
[9] S. M. Nikol’skii, ”Inequalities for entire functions of a finite degree and their applications in the theory of differentiation of functions of several variables,”Tr. Mat. Inst. Steklov,38, 244–278 (1951).
[10] S. A. Pichugov, ”Translation-invariant operators in linear metric spaces,”Anal. Math.,18, No. 3, 237–248 (1992). · Zbl 0796.47018
[11] S. A. Pichugov, ”Estimates of the norms of measure-continuous operators,”Mat. Zametki,50, No. 1, 146–148 (1991). · Zbl 0797.47019
[12] J. W. S. Cassels,An Introduction to Diophantine Approximation [Russian translation], Inostr Lit., Moscow (1961). · Zbl 0098.26301
[13] V. Jarnik, ”Über die simultanen diophantischen Approximationen,”Math. Z.,33, 505–543 (1931). · JFM 57.1370.01
[14] S. A. Telyakovskii, ”Norms of trigonometric polynomials and approximation of differentiable functions by linear means of their Fourier series,”Tr. Mat. Inst. Steklov,42, 61–97 (1961).
[15] A. B. Shidlovskii,Diophantine Approximations and Transcendental Numbers [in Russian], Moscow University, Moscow (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.