Frobenius distributions for real quadratic orders. (English) Zbl 0847.11010

In 1932, T. Nagell asked questions pertaining to the solutions of the Pell equation \((*)\) \(x^2- Dy^2= - 1\) for square-free \(D> 1\). Solutions to \((*)\) imply that \(D\) is a sum of two relatively prime squares. If \(\mathcal S\) denotes the set of all integers which are sums of two relatively prime squares, and \({\mathcal S}^-\) is the set of all integers \(D\) for which \((*)\) has integer solutions, then Nagell’s query boils down to: Does \({\mathcal S}^-\) have natural density in \(\mathcal S\)? This and an equivalent query of Rédei are answered by the author’s conjecture (too technical to state here). The author cites data, for which the conjecture holds in special cases, at the end of the paper. The general case remains open. The author also discusses possible generalizations from the quadratic case to abelian extensions of higher degree.
Reviewer: R.Mollin (Calgary)


11D09 Quadratic and bilinear Diophantine equations
11R11 Quadratic extensions
11R45 Density theorems
11R21 Other number fields
Full Text: DOI Numdam EuDML EMIS


[1] Beach, B.D. and Williams, H.C., A numerical investigation of the Diophantine equation x2 - dy2 = -1, Proc. 3rd Southeastern Conf. on Combinatorics, Graph Theory and Computing, 1972, pp. 37-52. · Zbl 0261.10015
[2] Bosma, W. and Stevenhagen, P., Density computations for real quadratic units, Math. Comp., to appear (1995). · Zbl 0859.11064
[3] Cohen, H. and Lenstra, H.W., Jr., Heuristics on class groups of number fields, Number Theory Noordwijkerhout 1983 (H. Jager, ed.), 1068, 1984. · Zbl 0558.12002
[4] Hardy, G.H. and Wright, E.M., An introduction to the theory of numbers, Oxford University Press, 1938. · JFM 64.0093.03
[5] Nagell, T., Über die Lösbarkeit der Gleichung x2 - Dy2 = -1, Arkiv för Mat., Astr., o. Fysik23 (1932), no. B/6, 1-5. · JFM 59.0180.02
[6] Rédei, L., Über die Pellsche Gleichung t2 - du2 = -1, J. reine angew. Math.173 (1935), 193-221. · JFM 61.0138.02
[7] Rédei, L., Über einige Mittelwertfragen im quadratischen Zahlkörper, J. reine angew. Math.174 (1936), 131-148. · Zbl 0009.29302
[8] Rieger, G.J., Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II, J. reine angew. Math.217 (1965), 200-216. · Zbl 0141.04305
[9] Stephens, A.J. and Williams, H.C., Some computational results on a problem of Eisenstein, Théorie des Nombres - Number Theory (J. W. M. de Koninck and C. Levesque, eds. ), de Gruyter, 1992, pp. 869-886. · Zbl 0689.10024
[10] Stevenhagen, P., On the 2-power divisibility of certain quadratic class numbers, J. of Number Theory43 (1993), no. (1), 1-19. · Zbl 0767.11054
[11] Stevenhagen, P., The number of real quadratic fields having units of negative norm, Exp. Math.2 (1993), no. (2), 121-136. · Zbl 0792.11041
[12] Stevenhagen, P., On a problem of Eisenstein, Acta Arith., (to appear, 1995). · Zbl 0851.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.