Znojil, M. Circular vectors and toroidal matrices. (English) Zbl 0847.15012 Bureš, J. (ed.) et al., Proceedings of the Winter School on geometry and physics, Srní, Czech Republic, January 1994. Palermo: Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 39, 143-148 (1996). Summary: Arrays of numbers may be written not only on a line (= “a vector”) or in the plain (= “a matrix”) but also on a circle (= “a circular vector”), on a torus (= “a toroidal matrix”) etc. In the latter case, the immanent index-rotation ambiguity converts the standard “scalar” product into a binary operation with several interesting properties.For the entire collection see [Zbl 0840.00036]. MSC: 15A63 Quadratic and bilinear forms, inner products Keywords:circular vector; toroidal matrix; scalar product; index-rotation × Cite Format Result Cite Review PDF