Overholt, Marius Injective hyperbolicity of domains. (English) Zbl 0847.32027 Ann. Pol. Math. 62, No. 1, 79-82 (1995). Let \(K_D\) denote the Kobayashi-Royden pseudometric on a domain \(D\) in \(\mathbb{C}^n\), and let \(S_D\) denote the pseudometric defined by K. T. Hahn [Ann. Pol. Math. 39, 71-81 (1981; Zbl 0476.32031)] using injective holomorphic mappings. In contrast to the situation for \(n = 1\) where \(K_D = S_D\) if and only if \(D\) is simply connected, the author proves that for \(n \geq 3\) the pseudometrics \(K_D\) and \(S_D\) always coincide. Reviewer: T.J.Barth (Riverside) Cited in 1 ReviewCited in 1 Document MSC: 32F45 Invariant metrics and pseudodistances in several complex variables Keywords:Hahn pseudometric; Kobayashi-Royden pseudometric Citations:Zbl 0476.32031 PDF BibTeX XML Cite \textit{M. Overholt}, Ann. Pol. Math. 62, No. 1, 79--82 (1995; Zbl 0847.32027) Full Text: DOI OpenURL