×

Dimensions at infinity for Riemannian manifolds. (English) Zbl 0847.53022

From the introduction: “This paper is essentially a survey, with however some variations or new points of view on already published results. The main theme is the study of the relationship between various Sobolev type inequalities on manifolds. In the first part, we introduce a scale of dimensions at infinity adapted to manifolds of polynomial growth, in which we recast the results of [the author, J. Funct. Anal. 136, No. 1, 81-113 (1996); D. Bakry, M. Ledoux, L. Coste-Saloff and the author, Sobolev inequalities in disguise (preprint); and M. Ledoux and the author, Ark. Mat. 32, No. 1, 63-77 (1994; Zbl 0826.53035)]. In the second one, we show how Poincaré inequalities allow at the same time to go down in the scale and to refine it into a scale of global inequalities. In the third part, we take up the more general situation where the volume growth of the manifolds is not necessarily governed by a power function”.

MSC:

53C20 Global Riemannian geometry, including pinching

Citations:

Zbl 0826.53035
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] BAKRY D., COULHON T., LEDOUX M., SALOFF-COSTE L., Sobolev inequalities in disguise, preprint.
[2] CARRON G., Inégalités isopérimétriques de Faber-Krahn et conséquences, à paraître dansTable ronde de géométrie riemannienne en l’honneur de Marcel Berger, A. L. Besse éd., Astérisque.
[3] CARRON G., Inégalités isopérimétriques sur les variétés riemanniennes, thesis, University of Grenoble, 1994.
[4] CHAVEL I., FELDMAN E., Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds,Duke Math. J., 64, 1991. · Zbl 0753.58031
[5] COULHON T., Noyau de la chaleur et discrétisation d’une variété riemannienne,Israël J. Math., 80, 1992, 289-300. · Zbl 0772.58055
[6] COULHON T., Espaces de Lipschitz et inégalités de Poincaré, to appear inJ. Funct. Anal..
[7] COULHON T., Ultracontractivity and Nash type inequalities, preprint. · Zbl 0887.58009
[8] COULHON T., LEDOUX M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: un contre-exemple,Ark. Mat., 32, 1994, 63-77. · Zbl 0826.53035
[9] COULHON T., SALOFF-COSTE L., Puissances d’un opérateur régularisant,Ann. Inst. H. Poincaré, proba. et stat., vol. 26, no, 3, 1990, pp.419-436. · Zbl 0709.47042
[10] COULHON T., SALOFF-COSTE L., Isopérimétrie pour les groupes et les variétés,Rev. Mat. Iberoamer., 9, 2, 1993, 293-314. · Zbl 0782.53066
[11] COULHON T., SALOFF-COSTE L., Minorations pour les chaînes de Markov unidimensionnelles,Prob. Th. Rel. F., 97, 1993, pp.423-431. · Zbl 0792.60063
[12] COULHON T., SALOFF-COSTE L., Variétés riemanniennes isométriques à l’infini, preprint. · Zbl 0845.58054
[13] GRIGOR’YAN A., Heat kernel upper bounds on a complete non-compact manifolds, to appear,Rev. Mat. Iberoamer.
[14] KANAI M., Analytic inequalities, and rough isometries between non-compact Riemannian manifolds, inCurvature and Topology of Riemannian Manifolds, Springer L. N. no 1201, 1986, 122-137. · Zbl 0593.53026
[15] PITTET C., Folner sequences on polycyclic groups, to appear inRev. Mat. Iberoamer.
[16] SALOFF-COSTE L., On global Sobolev inequalities,Forum Mat., 6, 1994, 271-286. · Zbl 0802.58055
[17] VAROPOULOS N., Isoperimetric inequalities and Markov chains,J. Funct. Anal., vol. 63, no 2, 1985, pp.215-239. · Zbl 0573.60059
[18] VAROPOULOS N., Hardy-Littlewood theory for semigroups,J. Funct. Anal., vol. 63, 2, 1985, 240-260. · Zbl 0608.47047
[19] VAROPOULOS N., Small time Gaussian estimates of heat diffusion kernels. Part I: the semigroup technique,Bull. Sc. Math., 113, 1989, 253-277. · Zbl 0703.58052
[20] YAMASAKI M., Parabolic and hyperbolic infinite networks,Hiroshima Math. J., 7, 1977, pp.135-146. · Zbl 0382.90088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.