zbMATH — the first resource for mathematics

Relaxation in \(BV\) versus quasiconvexification in \(W^{1,p}\); a model for the interaction between fracture and damage. (English) Zbl 0847.73077
For the study of the connection between damage and fracture of a material sample, the authors discuss some improvements which could be made to the hypotheses used in the problem. They construct a mathematical model in the BV-space of the deformation fields, under the following assumptions: (a) the phenomenon is studied in a close vicinity of the fracture; (b) the material is only allowed to brutally drop from its healthy states to its damaged state; (c) the configurational forces need break atomic bonds, and the crack propagation is not affected by the damaging process; (d) the quasistatic evolution of both damage and fracture is governed by a yield criterion, in accordance with the brittleness of the material; (e) the above criterion is energetic; (f) both damage and fracture processes are irreversible. The adopted model is variationally studied. The potential energy having to be minimized has the form \[ \int_{\text{body}} W(\nabla u)dx + \lambda H^{N-1} (S(u))- \int_{\text{body}} f\cdot u dx, \] where \(u\) is the deformation field, \(W(\xi)\) is an “elastic-type” energy density, \(\lambda\) is a dissipation rate, \(f\) are body loadings, and \(S(u)\) is the jump set of \(u\).
As the solution of the above problem is not unique, the authors propose a selective criterion for the solution choice: the global stability. The quasistatic evolution is investigated at discretized times. A special attention is given to the stable damage and fracture evolution in a brittle elastic continuum.
Reviewer: S.Zanfir (Craiova)

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74R99 Fracture and damage
Full Text: DOI
[1] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal.86, 125-145 (1984) · Zbl 0565.49010
[2] Allaire, G., Kohn, R.: Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Quart. Appl. Maths.LI, 4, 643-674 (1993) · Zbl 0805.73043
[3] Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital.3-B, 857-881 (1989) · Zbl 0767.49001
[4] Ambrosio, L.: Variational problems inSBV. Acta Appl. Math.17, 1-40 (1989) · Zbl 0697.49004
[5] Ambrosio, L.: On the lower semicontinuity of quasiconvex integrals inSBV (?;? k ). Nonlinear Anal. (to appear) · Zbl 0817.49017
[6] Ambrosio, L.: A new proof of theSBV compactness theorem. (to appear) · Zbl 0837.49011
[7] Ambrosio, L.: Dal Maso, G.: A general chain rule for distributional derivatives. Proc. Amer. Mat. Soc108, 691-702 (1990) · Zbl 0685.49027
[8] Ambrosio, L., Dal Maso, G.: On the relaxation inBV(?; ?m) of quasiconvex integrals. J. Funct. Anal.109, 76-97 (1992) · Zbl 0769.49009
[9] Ambrosio, L., Mortola, S., Tortorelli, V.M.: Functionals with linear growth defined on vector valuedBV functions. J. Math. Pures et Appl.70, 269-323 (1991) · Zbl 0662.49007
[10] Ball, J., Murat, F.:W 1,p quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58, 225-253 (1984) · Zbl 0549.46019
[11] Barroso, A.C., Bouchitté, G., Buttazzo, G., Fonseca, I.: Relaxation inBV(?;?p of energies involving bulk and surface energy contributions. Arch. Rat. Mech. Anal. (to appear) · Zbl 0876.49037
[12] Buttazzo, G., Dal Maso, G.: Integral representation and relaxation of local functionals. Nonlinear Anal.9, 515-532 (1985) · Zbl 0563.49008
[13] Celada, P., Dal Maso, G.: Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. Henri Poincaré (to appear) · Zbl 0833.49013
[14] Chudnovsky, A., Wu, S.: Effect of crack-microcracks interaction on energy release rates. Int. J. Fracture44, 43-56 (1990)
[15] Dacorogna, B.: Direct Methods in the Calculus of Variations, Vol.78. Springer, New York (1989) · Zbl 0703.49001
[16] Dal Maso, G., Kohn, R.: The local character of G-closure (in preparation)
[17] De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del calcolo delle variazioni. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.82, 199-210 (1988)
[18] De Giorgi, E., Letta, G.: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Sc. Norm. Sup. Pisa Cl. Sci.4, 61-99 (1977) · Zbl 0405.28008
[19] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[20] Federer, H.: Geometric Measure Theory. Springer, New York (1969) · Zbl 0176.00801
[21] Federer, H., Ziemer, W.: The Lebesgue set of a function whose distributional derivatives arep-th power summable. Indiana Univ. Math. J.22, 139-158 (1972) · Zbl 0238.28015
[22] Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl.67, 175-195 (1988) · Zbl 0718.73075
[23] Fonseca, I., Müller, S.: Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23, 1081-1098 (1992) · Zbl 0764.49012
[24] Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals inBV(?;?p) for integrandsf(x, u, ?u). Arch. Rat. Mech. Anal.123, 1-49 (1993) · Zbl 0788.49039
[25] Francfort, G.A., Marigo, J.J.: Mathematical analysis of damage evolution in a brittle damaging continuous medium. In: Mécanique, Modélisation Numérique et Dynamique des Matériaux. Publications du L.M.A., Presses Du C.N.R.S.124, Paris, 245-276 (1991)
[26] Francfort, G.A., Marigo, J.J.: Stable damage evolution in a brittle continuous medium. Eur. J. Mech., A/Solids12, 2, 149-189 (1993) · Zbl 0772.73059
[27] Francfort, G.A., Murat, F.: (in preparation)
[28] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies105, Princeton Univ. Press, Princeton (1983) · Zbl 0516.49003
[29] Gdoutos, E.E.: Fracture Mechanics Criteria and Applications. Kluwer, Dordrecht (1990) · Zbl 0726.73052
[30] Kohn, R.: The relaxation of a double-well energy. Cont. Mech. Thermodyn.3, 193-236 (1991) · Zbl 0825.73029
[31] Marcellini, P.: Periodic solutions and homogeneization of nonlinear variational problems. Ann. Mat. Pura Appl.1178, 139-152 (1978) · Zbl 0395.49007
[32] Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math.51, 1-28 (1985) · Zbl 0573.49010
[33] Marigo, J.J.: Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nuclear Eng. Design114, 249-272 (1989)
[34] Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966) · Zbl 0142.38701
[35] Müller, S.: Homogeneization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal.99, 189-212 (1987) · Zbl 0629.73009
[36] Vol’pert, A.I.: SpacesBV and quasi-linear equations. Math. USSR Sb.17, 225-267 (1969)
[37] Ziemer, W.P.: Weakly Differentiable Functions. Springer-Verlag, Berlin (1989) · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.