Henkin, G. M. The Abel-Radon transform and several complex variables. (English) Zbl 0848.32012 Bloom, Thomas (ed.) et al., Modern methods in complex analysis. The Princeton conference in honor of Robert C. Gunning and Joseph J. Kohn, Princeton University, Princeton, NJ, USA, Mar. 16-20, 1992. Princeton, NJ: Princeton University Press. Ann. Math. Stud. 137, 223-275 (1995). The main result of this article is the following generalization of the classical Abel’s theorem.Let \(V\) be a closed one-dimensional complex submanifold in the linearly concave domain \({\mathcal D} \subset \mathbb{C} \mathbb{P}^n\) with connected dual set \({\mathcal D}^* = \{\xi \in (\mathbb{C} \mathbb{P}^n)^*\mid \mathbb{C} \mathbb{P}^{n - 1}_\xi \subset {\mathcal D}\}\). Let \(\psi\) be a meromorphic 1-form on \(V\). The following statements are equivalent:a) \(V = \widetilde V \cap {\mathcal D}\) where \(\widetilde V\) is an algebraic subset of \(\mathbb{C} \mathbb{P}^n\) and \(\psi = \widetilde \psi |_V\) where \(\widetilde \psi\) is a rational form,b) the Abel transform \({\mathcal U} \psi\) is rational in \({\mathcal D}^*\).For the entire collection see [Zbl 0852.00026]. Reviewer: D.Barlet (Vandœuvre-les-Nancy) Cited in 2 ReviewsCited in 15 Documents MSC: 32F10 \(q\)-convexity, \(q\)-concavity 32C30 Integration on analytic sets and spaces, currents 44A12 Radon transform Keywords:Abel-Radon transform; concave domain PDF BibTeX XML Cite \textit{G. M. Henkin}, Ann. Math. Stud. 137, 223--275 (1995; Zbl 0848.32012) OpenURL