×

zbMATH — the first resource for mathematics

On nonlinear Schrödinger equations. II: \(H^ S\)-solutions and unconditional well-posedness. (English) Zbl 0848.35124
J. Anal. Math. 67, 281-306 (1995); correction ibid. 68, 305 (1996).
The author studies the initial value problem for the nonlinear Schrödinger equation \(\partial_t u= i(\Delta u- F(u))\), \(t\geq 0\), \(x\in \mathbb{R}^m\), under the assumption that \(F\in C^1(\mathbb{C}, \mathbb{C})\), \(F(0)= 0\), \(DF(\xi)= O(|\xi |^{k- 1})\) for some \(k\geq 1\) as \(|\xi |\to \infty\). The author proves uniqueness in \(L^\infty((0, T); L^2(\mathbb{R}^m))\cap L^r((0, T); L^q(\mathbb{R}^m))\), where \(r\) and \(q\) depend on \(m\) and \(k\). After this, a local existence theorem is proved for \(H^s\)-solutions using Lebesgue-type spaces instead of Besov-type spaces (used by T. Cazenaze and F. B. Weissler). Moreover, the existence of global \(H^s\)-solutions is shown under the assumption that \(F(\xi)= O^{\{s\}}(|\xi|^h)\) as \(|\xi|\to 0\), where \(h= 1+ 4/m\).
Reviewer: E.Minchev (Sofia)

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
35G25 Initial value problems for nonlinear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Bergh and J. Löfström,Interpolation Spaces, Springer, Berlin, 1976.
[2] H. Brezis,Remarks on the preceding paper by M. Ben-Artzi ”Global solutions of two-dimensional Navier-Stokes and Euler equations”, Arch. Rational Mech. Anal.128 (1994), 359–360. · Zbl 0837.35112 · doi:10.1007/BF00387713
[3] T. Cazenave and F. B. Weissler,The Cauchy problem for the critical nonlinear Schrödinger equation in H S , Nonlinear Analysis14 (1990), 807–836. · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[4] F. M. Christ and M. I. Weinstein,Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal.100 (1991), 87–109. · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[5] R. R. Coifman and Y. Meyer,Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Princeton, 1986, pp. 3–45.
[6] Y. Giga, T. Miyakawa and H. Osada,Two-dimensional Navier-Stokes flow with measures as initial velocity, Arch. Rational Mech. Anal.104 (1988), 223–250. · Zbl 0666.76052 · doi:10.1007/BF00281355
[7] J. Ginibre and G. Velo,Théorie de la diffusion dans l’espace d’énergie pour une classe d’équations de Schrödinger non linéaires, C. R. Acad. Sci. Paris298 (1984), 137–141. · Zbl 0593.35078
[8] J. Ginibre and G. Velo,The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincaré, analyse non linéaire2 (1985), 309–327. · Zbl 0586.35042
[9] A. Gulisashvili and M. A. Kon,Smoothness of Schrödinger semigroups and eigenfunctions, International Math. Res. Notices (1994), 193–199. · Zbl 0834.47033
[10] T. Kato,Strong L p solutions of the Navier-Stokes equation in \(\mathbb{R}\) m ,with applications to weak solutions, Math. Z.187 (1984), 471–480. · Zbl 0545.35073 · doi:10.1007/BF01174182
[11] T. Kato,On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. théor.46 (1987), 113–129.
[12] T. Kato,Nonlinear Schrödinger equations, Lecture Notes in Physics, Vol. 345, Springer, Berlin, 1989, pp. 218–263.
[13] G. Staffilani,The initial value problem for some dispersive differential equations, Dissertation, University of Chicago, 1995.
[14] Y. Tsutsumi,L 2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial Ekvac.30 (1987), 115–125. · Zbl 0638.35021
[15] Y. Tsutsumi,Global strong solutions for nonlinear Schrödinger equations, Nonlinear Analysis11 (1987), 1143–1154. · Zbl 0657.35032 · doi:10.1016/0362-546X(87)90003-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.