×

The hyperpower iteration revisited. (English) Zbl 0848.65021

This paper discusses an extension of the hyperpower method [cf. A. Ben-Israel, Math. Comput. 19, 452-455 (1965; Zbl 0136.12703)], which may be used for iterative computation of generalised inverses for example. The hyperpower method uses a basic iteration \(X_{k+1} = X_k (I + R_k + \dots + R^{q-1}_k)\), \(q \geq 2\), where \(A\) and \(X_0\) are arbitrary complex matrices and \(R_k\) is the residual \(I - AX_k\). The authors examine the method with residual modified to \(P(I - AX_k)\), with \(P\) idempotent.
The main thrust of the paper is analysis of the convergence of \(B^{q^k}\) for some \(B \in \mathbb{C}^{n \times n}\), where \(B\) will be related to the matrices defined previously. If the basic iteration converges, an appropriate \(P\) and limit \(L\) have to be found and the paper discusses such possibilities.

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
65F10 Iterative numerical methods for linear systems
15A09 Theory of matrix inversion and generalized inverses

Citations:

Zbl 0136.12703
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Israel, A. Ben, An iterative method for computing the generalized inverse of an arbitrary matrix, Math. Comp., 19, 452-455 (1965) · Zbl 0136.12703
[2] Israel, A. Ben, A note on an iterative method for generalized inversion of matrices, Math. Comp., 20, 439-440 (1966) · Zbl 0142.11603
[3] Israel, A. Ben; Cohen, D., On iterative computation of generalized inverses and associated projections, SIAM. J. Numer. Anal., 3, 410-419 (1966) · Zbl 0143.37402
[4] Israel, A. Ben; Greville, T. N.E., Generalized Inverses, Theory and Applications, ((1974), Wiley: Wiley New York), 290-297 · Zbl 0305.15001
[5] Chen, Xu Zhou, The necessary and sufficient conditions of iterative methods for computing generalized inverses, (Preliminary report (1991), North Carolina State Univ.)
[6] Hartwig, R. E.; Hall, F. J., Applications of the Drazin inverse to Cesaro-Neumann iterations, (Campbell, S., Recent advances in Generalized Inverses (1982), Pitman) · Zbl 0506.65016
[7] Hartwig, R. E.; Shoaf, J., Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, Austral. J. Math. Sect., A 24, 10-34 (1977) · Zbl 0372.15003
[8] Kuang, Jiao-Xun, Some methods for approximating the Drazin inverse of an operator in Banach space, J. Shanghai Teachers Coll., 3 (1983)
[9] Mönch, W., Anwendung des Schulz-Verfahrens zur Nachkorrektur einer näherungsweise berechneten verallgemeinerten Inversen einer Matrix, Z. Angew. Math. Mech., 61, 115-117 (1981) · Zbl 0465.65021
[10] Schultz, G., Iterative Berechnung der reziproken Matrix, Z. Angew. Math. Mech., 13, 57-59 (1933)
[11] Shinozaki, N.; Sibuya, M.; Tanabe, K., Numerical algorithms for the Moore-Penrose inverse of a matrix: Iterative methods, Ann. Inst. Statist. Math., 24, 621-629 (1972) · Zbl 0314.65016
[12] Sönderström, T.; Stewart, G. W., On the numerical Properties of an iterative method for computing the Moore-Penrose generalized inverse, SIAM J. Numer. Anal., 11, 67-74 (1974) · Zbl 0241.65038
[13] Tanabe, K., Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method, Linear Algebra Appl., 10, 163-175 (1975) · Zbl 0327.15012
[14] Petryshyn, W. V., On generalized inverses and the uniform convergence of \((I\) − βK)\(^n\) with applications to iterative methods, J. Math Anal. Appl., 18, 417-439 (1967) · Zbl 0189.47502
[15] Zlobec, S., On computing the generalized inverse of a linear operator, Glas. Mat. Ser., II 22, 265-271 (1967) · Zbl 0149.35101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.