zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A quasi-second-order proximal bundle algorithm. (English) Zbl 0848.90100
Summary: This paper introduces an algorithm for convex minimization which includes quasi-Newton updates within a proximal point algorithm that depends on a preconditioned bundle subalgorithm. The method uses the Hessian of a certain outer function which depends on the Jacobian of a proximal point mapping which, in turn, depends on the preconditioner matrix and on a Lagrangian Hessian relative to a certain tangent space. Convergence is proved under boundedness assumptions on the preconditioner sequence.

90C25Convex programming
Full Text: DOI
[1] M. Al-Baali, ”Variational quasi-Newton methods for unconstrained optimization,”JOTA 77 (1993) 127--143. · Zbl 0797.90086 · doi:10.1007/BF00940782
[2] A. Auslender, ”Numerical methods for nondifferentiable convex optimization,”Mathematical Programming Study 30 (1987) 102--126. · Zbl 0616.90052 · doi:10.1007/BFb0121157
[3] J. Bonnans, J.Ch. Gilbert, C. Lemaréchal and C. Sagastizabal, ”A family of variable metric proximal methods,”Mathematical Programming 68 (1995) 15--47. · Zbl 0832.90102
[4] E.W. Cheney and A.A. Goldstein, ”Newton’s method for convex programming and Tchebycheff approximation,”Numerische Mathematik 1 (1959) 253--268. · Zbl 0113.10703 · doi:10.1007/BF01386389
[5] A.R. Conn, N.I.M. Gould and Ph.L. Toint, ”Convergence of quasi-Newton matrices generated by the symmetric rank one update,”Mathematical Programming 50 (1991) 177--195. · Zbl 0737.90062 · doi:10.1007/BF01594934
[6] R. Correa and L. Lemaréchal, ”Convergence of some algorithms for convex minimization,”Mathematical Programming 62 (1993) 261--275. · Zbl 0805.90083 · doi:10.1007/BF01585170
[7] W.C. Davidon, ”Variable metric methods for mimimization,” Research and Development Report ANL-5990 (Rev.), Argonne National Laboratory (Argonne, IL, 1959); (reprinted inSIAM Journal on Optimization 1 (1991) 1--17).
[8] J.E. Dennis and J.J. Moré, ”Quasi-Newton methods, motivation and theory,”SIAM Review 19 (1977) 46--84. · Zbl 0356.65041 · doi:10.1137/1019005
[9] R. Fletcher, ”Resolving degeneracy in quadratic programming,”Annals of Operations Research 47 (1993) 307--334. · Zbl 0796.90042 · doi:10.1007/BF02023102
[10] M. Fukushima, ”A descent algorithm for nonsmooth convex programming,”Mathematical Programming 30 (1984) 163--175. · Zbl 0545.90082 · doi:10.1007/BF02591883
[11] P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981). · Zbl 0503.90062
[12] J. Guo, ”A class of variable-metric-secant algorithms for unconstrained optimization,” Ph.D. Dissertation, Washington State University (Pullman, WA, 1993).
[13] J. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms, I and II (Springer, Berlin, 1993). · Zbl 0795.49002
[14] J.E. Kelley, ”The cutting plane method for solving convex programs,”Journal of the SIAM 8 (1960) 703--712. · Zbl 0098.12104
[15] H. Khalfan, R.H. Byrd and R.B. Schnable, ”A theoretical and experimental study of the symmetric rank one update,”SIAM Journal on Optimization 3 (1993) 1--24. · Zbl 0771.65029 · doi:10.1137/0803001
[16] K.C. Kiwiel,Methods of Descent for Nondifferentiable Optimization (Springer, New York, 1985). · Zbl 0561.90059
[17] K.C. Kiwiel, ”Proximity control in bundle methods for convex nondifferentiable minimization,”Mathematical Programming 46 (1990) 105--122. · Zbl 0697.90060 · doi:10.1007/BF01585731
[18] C. Lemaréchal, ”An extension of Davidon methods to nondifferentiable problems,”Mathematical Programming Study 3 (1975) 95--109. · doi:10.1007/BFb0120700
[19] C. Lemaréchal, ”Numerical experiments in nonsmooth optimization,” in: E.A. Nurminski, ed.,Progress in Nondifferentiable Optimization (IIASA, Laxenburg, 1982) 61--84.
[20] C. Lemaréchal, ”Nondifferentiable Optimization,” in: G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Optimization, Handbooks in Operations, Research and Management Science, Vol. 1 (North-Holland, Amsterdam, 1989) 529--572.
[21] C. Lemaréchal, ”Lagrangian decomposition and nonsmooth optimization: Bundle algorithm, prox iteration, augmented Lagrangian,” in: F. Giannessi, ed.,Nonsmooth Optimization Methods and Applications (Gordon and Breath, Amsterdam, 1992) 201--216. · Zbl 1050.90553
[22] C. Lemaréchal and R. Mifflin, ”A globally and superlinearly convergent algorithm for one-dimensional minimization of convex functions,”Mathematical Programming 24 (1982) 241--256. · Zbl 0505.90064 · doi:10.1007/BF01585109
[23] C. Lemaréchal and C. Sagastizabal, ”An approach to variable metric bundle methods,” in:Proceedings of the 16th IFIP Conference on System Modelling and Optimization (Compiègne, 1993) 144--162.
[24] C. Lemaréchal and C. Sagastizabal, ”Practical aspects of the Moreau-Yosida regularization I: Theoretical properties,” INRIA report (Le Chesnay, 1994).
[25] B. Martinet, ”Régularisation d’inéquations variationnelles par aproximations successives,”Revue Française d’informatique et Recherche Opérationnelle R 3 (1970) 154--158.
[26] R. Mifflin, ”Stationarity and superlinear convergence of an algorithm for univariate locally Lipschitz constrained minimization,”Mathematical Programming 28 (1984) 50--71. · Zbl 0528.49024 · doi:10.1007/BF02612712
[27] R. Mifflin, ”Better than linear convergence and safeguarding in nonsmooth minimization,” in: P. Thoft-Christensen ed.,System Modelling and Optimization (Springer, New York, 1984) 321--330. · Zbl 0548.90059
[28] R. Mifflin, ”On superlinear convergence in univariate nonsmooth minimization,”Mathematical Programming 49 (1991) 273--279. · Zbl 0719.90073 · doi:10.1007/BF01588792
[29] R. Mifflin and J.L. Nazareth, ”The least prior deviation quasi-Newton update,”Mathematical Programming 65 (1994) 247--261. · Zbl 0834.90123 · doi:10.1007/BF01581698
[30] J.J. Moreau, ”Proximité et dualité dans un espace hilbertien,”Bulletin de la Société Mathématique de France 93 (1965) 273--299.
[31] L. Qi and J. Sun, ”A nonsmooth version of Newton’s method,”Mathematical Programming 58 (1993) 353--367. · Zbl 0780.90090 · doi:10.1007/BF01581275
[32] M. Qian, ”The variable metric proximal point algorithm: global and superlinear convergence,” Manuscript, Department of Mathematics, University of Washington (Seattle, WA, 1992).
[33] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[34] R.T. Rockafellar, ”Augmented Lagrangians and applications of the proximal point algorithm in convex programming,”Mathematics of Operations Research 1 (1976) 97--116. · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[35] R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal on Control and Optimization 14 (1976) 877--898. · Zbl 0358.90053 · doi:10.1137/0314056
[36] H. Schramm and J. Zowe, ”A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results,”SIAM Journal on Optimization 2 (1992) 121--152. · Zbl 0761.90090 · doi:10.1137/0802008
[37] J.E. Spingarn, ”Applications of the method of partial inverse to convex programming: Decomposition,”Mathematical Programming 32 (1985) 199--223. · Zbl 0565.90058 · doi:10.1007/BF01586091
[38] P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions,”Mathematical Programming Study 3 (1975) 145--173. · Zbl 0369.90093 · doi:10.1007/BFb0120703
[39] K. Yosida,Functional Analysis (Springer, Berlin, 1964). · Zbl 0830.46001
[40] J. Zowe, ”Nondifferentiable optimization,” in: K. Schittkowski, ed.,Computational Mathematical Programming (Springer, New York, 1985) 323--356. · Zbl 0581.90072