zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
System identification with generalized orthonormal basis functions. (English) Zbl 0848.93013
Linear system identification is considered by using a set of flexible basis functions for the space of stable systems that generalize the classical Laguerre and Kautz bases. A least-squares identification of a finite number of expansion coefficients in the orthogonal series expansion of a transfer function is studied, and explicit bounds for the asymptotic bias and variance errors of the parameter estimates and the resulting transfer function estimates are derived and analyzed. The important advantage of the method is that a proper choice of basis functions (reflecting the dominant dynamics of the process to be modeled) can substantially diminish the number of expansion coefficients that should be estimated in a finite-length series expansion to obtain the approximate model up to a satisfactory accuracy. An illustrative simulation example is included.

MSC:
93B30System identification
42C10Fourier series in special orthogonal functions
WorldCat.org
Full Text: DOI
References:
[1] Clowes, G. J.: Choice of the time scaling factor for linear system approximations using orthonormal Laguerre functions. IEEE trans. Autom. control 10, 487-489 (1965)
[2] De Callafon, R. A.; Den Hof, P. M. J. Van; Steinbuch, M.: Control relevant identification of a compact disc Pick-up mechanism. Proc. 32nd IEEE conf. On decision and control, 2050-2055 (1993)
[3] De Vries, D. K.: Identification of model uncertainty for control design. Doctoral dissertation (1994)
[4] Fu, Y.; Dumont, G. A.: An optimum time scale for discrete Laguerre network. IEEE trans. Autom. control 38, 934-938 (1993) · Zbl 0800.93033
[5] Gottlieb, M. J.: Concerning some polynomials orthogonal on finite or enumerable set of points. Am. J. Math. 60, 453-458 (1938) · Zbl 0018.25204
[6] Grenander, U.; Szegö, G.: Toeplitz forms and their applications. (1958) · Zbl 0080.09501
[7] Hakvoort, R. G.; Den Hof, P. M. J. Van: An instrumental variable procedure for identification of probabilistic frequency response uncertainty regions. Proc. 33rd IEEE conf. On decision and control, 3596-3601 (1994)
[8] Hannan, E. J.; Wahlberg, B.: Convergence rates for inverse Toeplitz matrix forms. J. multiv. Anal. 31, 127-135 (1989) · Zbl 0689.62078
[9] Heuberger, P. S. C.: On approximate system identification with system based orthonormal functions. Doctoral dissertation (1991)
[10] Heuberger, P. S. C.; Bosgra, O. H.: Approximate system identification using system based orthonormal functions. Proc. 29th IEEE conf. On decision and control, 1086-1092 (1990)
[11] Heuberger, P. S. C.; Den Hof, P. M. J. Van: A new signals and systems transform induced by generalized orthonormal basis functions. Report N-487 (1995)
[12] Heuberger, P. S. C.; Den Hof, P. M. J. Van; Bosgra, O. H.: A generalized orthonormal basis for linear dynamical systems. IEEE trans. Autom. control 40, 451-465 (1995) · Zbl 0835.93011
[13] Heuberger, P. S. C.; Den Hof, P. M. J. Van; Bosgra, O. H.: A generalized orthonormal basis for linear dynamical systems. Proc. 32nd IEEE conf. On decision and control, 2850-2855 (1993)
[14] Kautz, W. H.: Transient syythesis in the time domain. IRE trans. Cire. theory 1, 29-39 (1954)
[15] King, R. E.; Paraskevopoulos, P. N.: Parametric identification of discrete time SISO systems. Int. J. Control 30, 1023-1029 (1979) · Zbl 0418.93026
[16] Lee, Y. W.: Synthesis of electrical networks by means of the Fourier transforms of Laguerre functions. J. maths and phys. 11, 83-113 (1933)
[17] Lee, Y. W.: Statistical theory of communication. (1960) · Zbl 0091.14002
[18] Ljung, L.: System identification--theory for the user. (1987) · Zbl 0615.93004
[19] Ljung, L.; Yuan, Z. D.: Asymptotic properties of black-box identification of transfer functions. IEEE trans. Autom. control 30, 514-530 (1985) · Zbl 0632.93075
[20] Nurges, Y.: Laguerre models in problems of approximation and identification of discrete systems. Autom. rem. Control 48, 346-352 (1987) · Zbl 0625.93020
[21] Nurges, Y.; Yaaksoo, Y.: Laguerre state equations for a multivariable discrete system. Autom. rem. Control 42, 1601-1603 (1981) · Zbl 0501.93040
[22] Szegö, G.: 4th ed.orthogonal polynomials. Orthogonal polynomials (1975)
[23] Den Hof, P. M. J. Van; Heuberger, P. S. C.; Bokor, J.: System identification with generalized orthonormal basis functions. Proc. 33rd IEEE conf. On decision and control, 3382-3387 (1994)
[24] Wahlberg, B.: On the use of orthogonalized exponentials in system identification. Report lith-ISY-1099 (1990) · Zbl 0714.93055
[25] Wahlberg, B.: System identification using Laguerre models. IEEE trans. Autom. control 36, 551-562 (1991) · Zbl 0738.93078
[26] Wahlberg, B.: System identification using kautz models. IEEE trans. Autom. control 39, 1276-1282 (1994) · Zbl 0807.93065
[27] Wahlberg, B.: Laguerre and kautz models. Preprints 10th IFAC symp. On system identification, Copenhagen 3, 1-12 (1994)
[28] Wiener, N.: Extrapolation, interpolation and smoothing of stationary time series. (1949) · Zbl 0036.09705