×

Abelianization of the second nonabelian Galois cohomology. (English) Zbl 0849.12011

Let \(k\) be a field of characteristic 0, \(\overline k\) an algebraic closure of \(k, \overline G\) an algebraic group over \(\overline k\). T. A. Springer has defined the notion of a \(k\)-kernel \(L\) attached to \(\overline G\), as well as its nonabelian Galois cohomology set \(H^2 (k,L)\). A \(k\)-kernel is a pair \(L = (\overline G, \kappa)\), where \(\kappa\) is a homomorphism from \(\Gamma = \text{Gal} (\overline k/k)\) into the group \(SOut G\) of semi-algebraic outer automorphisms of \(\overline G\) over \(k\), such that:
i) \(\kappa\) is a splitting of the exact sequence \(1 \to Out \overline G \to SOut \overline G \to \Gamma\);
ii) \(\kappa \) can be lifted to a continuous map from \(\Gamma\) to the group \(SAut \overline G\) of semi-algebraic automorphisms of \(\overline G\) over \(k\).
Obstructions to certain constructions over \(k\) lie in \(H^2 (k,L)\), such a construction being possible if and only if the obstruction is a so-called “neutral element” in \(H^2 (k,L)\). In this paper, for \(\overline G\) connected, the author defines an abelian Galois cohomology group \(H^2_{ab} (k,L)\), as well as an abelianization map \(ab^2\): \(H^2 (k,L) \to H^2_{ab} (k,L)\) which takes the neutral elements to zero. If \(k\) is a local or a number field, he shows that the converse holds: an element \(\eta\) is neutral if and only if \(ab^2 (\eta) = 0\). He then applies this criterion to derive a Hasse principle for neutral elements. In particular, if \(\overline G\) is connected semisimple and \(k\) is any number field, he shows that an element \(\eta \in H^2 (k,L)\) is neutral if and only if all its archimedean localizations are neutral. He also recovers an old result of J.-C. Douai [C. R. Acad. Sci., Paris. Sér. A 280, 321-323 (1975; Zbl 0328.20036)] that, for \(\overline G\) connected semisimple and \(k\) any nonarchimedean local field or totally imaginary number field, all elements of \(H^2 (k,L)\) are neutral. Finally, he uses his Hasse principle for \(H^2 (k,L)\) to give new proofs of various former results on the Hasse principle for homogeneous spaces due to G. Harder [Jahresber. Deutsch. Math.-Ver. 70, 182-216 (1968; Zbl 0194.05701)], A. S. Rapinchuk [Dokl. Akad. Nauk BSSR 31, 773-776 (1987; Zbl 0679.14027)] or himself [J. Reine Angew. Math. 426, 179-192 (1992; Zbl 0739.14030)].

MSC:

12G05 Galois cohomology
20G10 Cohomology theory for linear algebraic groups
11R34 Galois cohomology
Full Text: DOI

References:

[1] M. V. Borovoi, The algebraic fundamental group and abelian Galois cohomology of reductive algebraic groups , preprint, MPI/89-90, Bonn, 1989.
[2] M. V. Borovoi, The Hasse principle for homogeneous spaces , J. Reine Angew. Math. 426 (1992), 179-192. · Zbl 0739.14030 · doi:10.1515/crll.1992.426.179
[3] L. Breen, Théorie de Schreier supérieure , Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 465-514. · Zbl 0795.18009
[4] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 247-289. · Zbl 0437.14012
[5] M. Demazure and A. Grothendieck, Schémas en groupes. III: Structure des schémas en groupes réductifs , Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin, 1962/1964. · Zbl 0212.52810 · doi:10.1007/BFb0059027
[6] P. Deligne and J. S. Milne, Tannakian categories , Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin, 1982, in Hodge Cycles, Motives, and Shimura Varieties. · Zbl 0477.14004
[7] J.-C. Douai, \(2\)-cohomologie galoisienne des groupes semi-simples , thèse, Université de Lille I, 1976.
[8] J.-C. Douai, \(2\)-cohomologie galoisienne des groupes semi-simples définis sur les corps locaux , C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 6, Aii, A321-A323. · Zbl 0328.20036
[9] J.-C. Douai, Cohomologie galoisienne des groupes semi-simples définis sur les corps globaux , C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 24, Ai, A1077-A1080. · Zbl 0362.20030
[10] J. Giraud, Cohomologie non-abélienne , Grundlehren Math. Wiss., vol. 179, Springer-Verlag, Berlin, 1971. · Zbl 0226.14011
[11] 1 G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. I , Math. Z. 90 (1965), 404-428. · Zbl 0152.00903 · doi:10.1007/BF01112362
[12] 2 G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II , Math. Z. 92 (1966), 396-415. · Zbl 0152.01001 · doi:10.1007/BF01112219
[13] G. Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen , Jber. Deutsch. Math.-Verein. 70 (1967/1968), no. Heft 4, Abt. 1, 182-216. · Zbl 0194.05701
[14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces , Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978. · Zbl 0451.53038
[15] J. E. Humphreys, Linear algebraic groups , Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New York, 1975. · Zbl 0325.20039
[16] 1 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak p\)-adischen Körpern. I , Math. Z. 88 (1965), 40-47. · Zbl 0143.04702 · doi:10.1007/BF01112691
[17] 2 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über \(\mathfrak p\)-adischen Körpern. II , Math. Z. 89 (1965), 250-272. · Zbl 0143.04702 · doi:10.1007/BF01112691
[18] M. Kneser, Lectures on Galois cohomology of classical groups , Tata Institute of Fundamental Research Lectures on Mathematics, vol. 47, Tata Institute of Fundamental Research, Bombay, 1969. · Zbl 0246.14008
[19] R. E. Kottwitz, Stable trace formula: elliptic singular terms , Math. Ann. 275 (1986), no. 3, 365-399. · Zbl 0577.10028 · doi:10.1007/BF01458611
[20] S. Mac Lane, Homology , Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press Inc., Publishers, New York, 1963. · Zbl 0133.26502
[21] J. S. Milne, Arithmetic duality theorems , Perspectives in Mathematics, vol. 1, Academic Press Inc., Boston, MA, 1986. · Zbl 0613.14019
[22] D. Mumford, Abelian varieties , Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. · Zbl 0223.14022
[23] V. P. Platonov and A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel , “Nauka”, Moscow, 1991. · Zbl 0732.20027
[24] A. S. Rapinchuk, The Hasse principle for symmetric spaces , Dokl. Akad. Nauk BSSR 31 (1987), no. 9, 773-776, 859. · Zbl 0679.14027
[25] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres , J. Reine Angew. Math. 327 (1981), 12-80. · Zbl 0468.14007 · doi:10.1515/crll.1981.327.12
[26] J.-P. Serre, Cohomologie galoisienne , Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin, 1964. · Zbl 0128.26303 · doi:10.1007/BFb0108758
[27] J.-P. Serre, Groupes algébriques et corps de classes , Hermann, Paris, 1975. · Zbl 0318.14004
[28] T. A. Springer, Nonabelian \(H^2\) in Galois cohomology , Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 164-182. · Zbl 0193.48902
[29] T. A. Springer, Reductive groups , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-27. · Zbl 0416.20034
[30] T. A. Springer, Linear algebraic groups , Progress in Mathematics, vol. 9, Birkhäuser Boston, Mass., 1981. · Zbl 0453.14022
[31] R. Steinberg, Endomorphisms of linear algebraic groups , Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. · Zbl 0164.02902
[32] A. Weil, The field of definition of a variety , Amer. J. Math. 78 (1956), 509-524. JSTOR: · Zbl 0072.16001 · doi:10.2307/2372670
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.