Local indices of \(p\)-adic differential operators corresponding to Artin-Schreier-Witt coverings. (English) Zbl 0849.12013

From the author’s introduction: In this paper we study local indices of \(p\)-adic differential operators derived from \(p\)-adic representations [as defined by P. Robba, Ann. Inst. Fourier 35, 13-55 (1985; Zbl 0566.12017)]. The main result of this paper is that, for a complete discrete valuation ring of characteristic \(p > 2\) with perfect residue field, the Swan conductor of a representation of rank 1 is equal to the local index of the corresponding \(p\)-adic differential operator, as conjectured by R. Crew [cf. Algebraic geometry, Proc. Symp. Pure Math. 46, 111-138 (1987; Zbl 0639.14011)].


12H25 \(p\)-adic differential equations
14F30 \(p\)-adic cohomology, crystalline cohomology
Full Text: DOI


[1] S. S. Abhyankar, Local Analytic Geometry , Pure and Applied Mathematics, Vol. XIV, Academic Press, New York, 1964. · Zbl 0205.50401
[2] P. Berthelot, Cohomologie rigide et théorie des \(\mathcal{D}\)-modules , \(p\)-Adic Analysis (Trento, 1989), Lecture Notes in Math., vol. 1454, Springer-Verlag, Berlin, 1990, pp. 80-124. · Zbl 0722.14008
[3] R. Crew, \(F\)-isocrystals and \(p\)-adic representations , Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, 1987, pp. 111-138. · Zbl 0639.14011
[4] J. M. Fontaine, Représentations \(p\)-adiques des corps locaux. I , The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249-309. · Zbl 0743.11066
[5] L. Garnier, Quelques propriétés des \(\mathcal{D}^†\)-modules holonomes sur une courbe , thèse, Université de Rennes, 1993.
[6] H. Hasse, Die Grupper der \(P^{n}\)-primären Zahlen für einen Primteiler \(\mathfrak{p}\) von \(p\) , J. Reine Angew. Math. 176 (1936), 174-183. · Zbl 0016.05204
[7] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case , Algebraic \(K\)-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, 1989, pp. 101-131. · Zbl 0716.12006
[8] S. Matsuda, On the Swan conductor in positive characteristic , · Zbl 0928.14017 · doi:10.1353/ajm.1997.0026
[9] M. Raynaud, Anneaux Locaux Henséliens , Lecture Notes in Math., vol. 169, Springer-Verlag, Berlin, 1970. · Zbl 0203.05102
[10] P. Robba, Indice d’un opérateur différentiel \(p\)-adique. IV. Cas des systèmes. Mesure de l’irrégularité dans un disque , Ann. Inst. Fourier (Grenoble) 35 (1985), no. 2, 13-55. · Zbl 0548.12016 · doi:10.5802/aif.1008
[11] T. Sekiguchi and N. Suwa, Théorie de Kummer-Artin-Schreier-Witt ,
[12] S. V. Vostokov, Explicit form of the law of reciprocity , Math. USSR-Izv. 13 (1978), 557-588. · Zbl 0467.12018 · doi:10.1070/IM1979v013n03ABEH002077
[13] P. T. Young, Radii of convergence and index for \(p\)-adic differential operators , Trans. Amer. Math. Soc. 333 (1992), no. 2, 769-785. · Zbl 0762.12005 · doi:10.2307/2154061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.