×

zbMATH — the first resource for mathematics

Fast-decaying potentials on the finite-gap background and the \(\overline {\partial}\)-problem on the Riemann surfaces. (English) Zbl 0850.35081
Theor. Math. Phys. 99, No. 2, 599-605 (1994) and Teor. Mat. Fiz. 99. No. 2, 300-308 (1994).
Summary: The direct and the inverse ‘scattering problems’ for the heat-conductivity operator \(L_P= \partial_y- \partial^2_x+ u(x, y)\) are studied for the following class of potentials: \(u(x, y)= u_0(x, y)+ u_1(x, y)\), where \(u_0(x, y)\) is a nonsingular real finite-gap potential and \(u_1(x, y)\) decays sufficiently fast as \(x^2+ y^2\to \infty\). We show that the ‘scattering data’ for such potentials is the \(\overline\partial\)-problem data on the Riemann surface corresponding to the potential \(u_0(x, y)\). The ‘scattering data’ corresponding to real potentials is characterized and it is proved that the inverse problem corresponding to such data has unique nonsingular solution without the ‘small norm’ assumption. Analogs of these results for the fixed negative energy scattering problem for the two-dimensional time-independent Schrödinger operator \(L_P= - \partial^2_x- \partial^2_y+ u(x, y)\) are obtained.
MSC:
35Q40 PDEs in connection with quantum mechanics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81U40 Inverse scattering problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Novikov S.P. and Veselov A.P., Sov. Math. Dokl.,30, 588-591; Sov. Math. Dokl.,30 (1984) 705-708.
[2] Manakov S.V., Usp. Mat. Nauk,31 (1976), ? 5, 245-246.
[3] Ablowitz M.J., Jaacov D. Bar, and Fokas A.S., Stud. in Appl. Math.,69 (1983), ? 2, 135-143.
[4] Beals R. and Coifman R.R., Pseudodifferential Oper. and Appl. Proc. Symp. Notre Dame Ind., Apr. 2-5, 1984, Providence R.I., 1985, 45-70.
[5] Grinevich, P.G. and Novikov R.G., Functional Anal. Appl.,19 (1985), ? 4, 276-285. · Zbl 0657.35122
[6] Grinevich P.G. and Manakov S.V., Functional Anal. Appl.,20 (1986), ? 2, 94-103. · Zbl 0617.35031
[7] Grinevich P.G. and Novikov S.P., Functional Anal. Appl.,22 (1988), ? 1, 19-27. · Zbl 0672.35074
[8] Krichever, I.M., Sov. Math. Dokl.,17 (1976) 394-397.
[9] Krichever I.M., Russian Math. Surveys,44:2 (1989), 145-225. · Zbl 0699.35188
[10] Dubrovin B.A., Krichever I.M., and Novikov S.P., Sov. Math. Dokl.17 (1976) 947-951.
[11] Natanzon S.M., Functional. Anal. Appl.,22 (1988), ? 1, 68-70; Functional Anal. Appl.,26 (1992) ? 1, 13-20. · Zbl 0656.35025
[12] Kusnetsov E.A., and Mikhailov A.V., Sov. Phys. ? JETP40 (1974), ? 5, 855-859.
[13] Krichever I.M., Functional. Anal. Appl.9 (1975), ? 2, 161-163. · Zbl 0333.34022
[14] Bikbaev R.F. and Sharipov R.A., Theor. Math. Phys.,78 (1989), ? 3, 244-252. · Zbl 0694.35145
[15] Rodin Yu.L., Physica D,24 (1987), ? 1-3, 1-53. · Zbl 0605.30043
[16] Grinevich P.G., Functional Anal. Appl.,23 (1989), ? 4, 79-80.
[17] Faddeev L.D. Inverse problem of the quantum scattering theory II. ? Sovremennye Problemy Matematiki, Vol. 3 (1974), VINITI, Moscow, transl. in Journal of Sov. Math.,5 (1976), ? 3, 334-396.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.