zbMATH — the first resource for mathematics

Generic solutions for some integrable lattice equations. (English) Zbl 0850.35095
Theor. Math. Phys. 99, No. 2, 505-510 (1994) and Teor. Mat. Fiz. 99. No. 2, 177-184 (1994).
Summary: We derive the expressions for \(\psi\)-functions and generic solutions of lattice principal chiral equations, lattice KP hierarchy and hierarchy including lattice \(N\)-wave type equations. \(\tau\)-function of \(n\) free fermions plays a fundamental role in this context. Miwa’s coordinates in our case appear as the lattice parameters.
35Q53 KdV equations (Korteweg-de Vries equations)
81T25 Quantum field theory on lattices
Full Text: DOI arXiv
[1] M.J. Ablowitz and F.J. Ladik, Stud. Appl. Math.55 (1976) 213;57 (1977) 1; R. Hirota, J. Phys. Soc. Japan43 (1977) 1424, 2074, 2079;50 (1981) 3785; E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Japan51 (1982) 4116, 4125;52 (1983) 388, 761, 766; F.W. Nijhoff, V.G. Papageorgiou, and H.W. Capel,Integrable Time-Discrete Systems: Lattices and Mappings, in Proc. of the Int. Workshop on Quantum Groups, The Euler Int. Math. Institute, Leningrad, ed. P.P. Kulish, Springer Lecture Notes Math.1510 (1992) 312.
[2] V.E. Zakharov, S.V. Manakov, S.P. Novicov, and L.P. Pitaevsky,Theory of Solitons: the Inverse Scattering Method (New York: Plenum Publ. Corp., 1984); V.E. Zakharov and S.V.Manakov, Zap. Nauchn. Sem. LOMI133 (1984) 77; V.E. Zakharov and S.V. Manakov, Funkts. Anal. i Ego Prilozh.19 (1985) 11; L.V. Bogdanov and S.V. Manakov, J. Phys. A.: Math. Gen.21 (1988) L537. · Zbl 0553.35078
[3] G.Segal and G.Wilson,Loop Groups and Equations of KdV Type, Publ. Math. I.H.E.S.61 (1985) 1. · Zbl 0592.35112
[4] I.M. Krichever, Dokl. Akad. Nauk253 (1980) 288.
[5] T. Miwa, Proc. Jpn. Acad.58A (1982) 9.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.