×

Generalized conditional symmetries and exact solutions of non-integrable equations. (English) Zbl 0850.35097

Theor. Math. Phys. 99, No. 2, 571-582 (1994) and Teor. Mat. Fiz. 99. No. 2, 263-277 (1994).
Summary: We introduce the concept of a generalized conditional symmetry. This concept provides an algorithm for constructing physically important exact solutions of non-integrable equations. Examples include 2-shock and 2-soliton solutions. The existence of such exact solutions for non-integrable equations can be traced back to the relation of these equations with integrable ones. In this sense these exact solutions are remnants of integrability.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35L67 Shocks and singularities for hyperbolic equations
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. J. Ablowitz and A. Zeppetella, Bull. Math. Biol. 41 (1979) 835.
[2] R. Fitzhugh, Biophys. J. 1 (1961) 445; J. S Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50 (1962) 2061; A. Kolmogorov, I. Petrovsky, and N. Piscounov, Bull. Univ. Etat. Moscou (Ser. Int.) A1 (1937) 1; A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38 (1969) 239.
[3] J. D. Cole, Quart. Appl. Math. 9 (1951) 225; E. Hopf, Comm. Pure Appl. Math. 3 (1950) 201.
[4] T. Kawahara and M. Tanaka, Phys. Lett. 97A (1983) 311.
[5] J. Satsuma, Exact solutions of Burgers equation with reaction terms, preprint, 1987. · Zbl 0736.35104
[6] R. Conte, Phys. Lett. 134A (1988) 100; F. Cariello and M. Tabor, Physica 39D (1989) 77; P. G. Estévez and P. R. Gordoa, J. Phys. 23A (1990) 4831; Z. Chen and B. Guo, IMA J. Appl. Math. 48 (1992) 645.
[7] M. C. Nucci and P. A. Clarkson, Phys. Lett. 164A (1992) 49-56.
[8] G. W. Bluman and J. D. Cole, J. Math. Mech. 18 (1969) 1025.
[9] P. J. Olver and P. Rosenau, Phys. Lett. 114A (1986) 107; SIAM J. Appl. Math 47 (1987) 263.
[10] P. A. Clarkson and P. Winternitz, Physica D 49 (1991) 257. · Zbl 0734.35123
[11] N. A. Kudryashov, Phys. Lett. 169A (1992) 237.
[12] I. M. Gel’fand and L. A. Dikii, Uspeki Matem. Nauk 30 (1975) 67.
[13] R. L. Anderson and N. H. Ibragimov,Lie-Bäcklund Transformations in Applications, SIAM Stud. Appl. Math. No. 1, Philadelphia, 1979.
[14] A. S. Fokas and I. M. Gel’fand, Bi-hamiltonian structures and integrability, inImportant Developments in Soliton Theory, ed. by A. S. Fokas and V. E. Zakharov, Springer-Verlag, 1993.
[15] L. V. Ovsiannikov,Group Analysis of Differential Equations, Academic Press, New York, 1982. · Zbl 0485.58002
[16] E. L. Ince,Ordinary Differential Equations, Longmans and Green, London-New York 1926. · JFM 52.0462.01
[17] A. S. Fokas, J. Math. Phys. 21 (1980) 1318; Stud. Appl. Math. 77 (1987) 253. · Zbl 0455.35109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.