zbMATH — the first resource for mathematics

Some clarifications of the CANDECOMP algorithm applied to INDSCAL. (English) Zbl 0850.62463

62H25 Factor analysis and principal components; correspondence analysis
62H99 Multivariate analysis
Full Text: DOI
[1] Carroll, J. D., & Chang, J. J. (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of ”Eckart-Young” decomposition.Psychometrika, 35, 283–319. · Zbl 0202.19101 · doi:10.1007/BF02310791
[2] Carroll, J. D., & Pruzansky, S. (1984) The CANDECOMP-CANDELINC family of models and methods for multidimensional data analysis. In H. G. Law, C. W. Snyder, J. A. Hattie, & R. P. McDonald (Eds.),Research methods for multimode data analysis (pp. 372–402). New York: Praeger.
[3] Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.Psychometrika, 1, 211–218. · JFM 62.1075.02 · doi:10.1007/BF02288367
[4] Harshman, R. A. (1970) Foundations of the PARAFAC procedure: models and conditions for an ”explanatory” multi-mode factor analysis.UCLA Working Papers in Phonetics, 16, 1–84.
[5] Harshman, R. A. (1972). Determination and proof of minimum uniqueness conditions for PARAFAC1.UCLA Working Papers in Phonetics, 22, 111–117.
[6] Kroonenberg, P. M. (1983).Three mode principal component analysis: Theory and applications. Leiden: DSWO Press. · Zbl 0513.62059
[7] Levin, J. (1988). Note on convergence of MINRES.Multivariate Behavioral Research, 23, 413–417. · doi:10.1207/s15327906mbr2303_8
[8] ten Berge, J. M. F., Kiers, H. A. L., & de Leeuw, J. (1988) Explicit CANDECOMP/PARAFAC solutions for a contrived 2 \(\times\) 2 \(\times\) 2 array of rank three.Psychometrika, 53, 579–584. · Zbl 0718.62138 · doi:10.1007/BF02294409
[9] ten Berge, J. M. F., Knol, D. L., & Kiers, H. A. L. (1988). A treatment of the orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to varimax rotation.Computational Statistics Quarterly, 3, 207–217. · Zbl 0726.62090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.