zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the connection between Hamiltonian many-particle systems and the hydrodynamical equations. (English) Zbl 0850.70166

70H05Hamilton’s equations
76B47Vortex flows
Full Text: DOI
[1] Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, 1975. · Zbl 0984.82500
[2] Braun, W. & Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 101-113, 1977. · Zbl 1155.81383 · doi:10.1007/BF01611497
[3] Gingold, R. A. & Monaghan, J. J.: Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys. 46, 429-453, 1982. · Zbl 0487.76010 · doi:10.1016/0021-9991(82)90025-0
[4] Lachowicz, M. & Pulvirenti, M.: A stochastic system of particles modelling the Euler equations. Arch. Rational Mech. Anal. 109, 81-93, 1990. · Zbl 0682.76002 · doi:10.1007/BF00377981
[5] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer-Verlag, 1984. · Zbl 0537.76001
[6] Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 69, 279-322, 1985. · Zbl 0549.60071 · doi:10.1007/BF02450284
[7] Oelschläger, K.: A fluctuation theorem for moderately interacting diffusion processes. Probab. Th. Rel. Fields 74, 591-616, 1987. · Zbl 0592.60064 · doi:10.1007/BF00363518
[8] Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Th. Rel. Fields 82, 565-586, 1989. · Zbl 0673.60110 · doi:10.1007/BF00341284
[9] Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Diff. Eqs. 88, 294-346, 1990. · Zbl 0734.60101 · doi:10.1016/0022-0396(90)90101-T