×

zbMATH — the first resource for mathematics

Concentrations in regularizations for \(2-D\) incompressible flow. (English) Zbl 0850.76730

MSC:
76T99 Multiphase and multicomponent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A vortex method for flows with slight density variations, J. Comp. Physics (in press). · Zbl 0576.76023
[2] Anderson, S.I.A.M. J. Num. Anal. 22 pp 413– (1985)
[3] Attouch, J. Funct. Anal. 50 pp 329– (1983)
[4] Beale, Comm. Math. Phys. 94 pp 61– (1984)
[5] Beale, Math. Comp. 39 pp 29– (1982)
[6] Beale, Math. Comp. 37 pp 243– (1981)
[7] Caflisch, Comm. Pure Appl. Math. 39 pp 807– (1986)
[8] Chorin, J. Fluid Mech. 57 pp 785– (1973)
[9] and , Un terme étrange venu d’aileurs, in Non-linear Partial Differential Equations and their Applications, Collége de France Seminar, Vol. II and III, Research Notes in Mathematics, #60, pp. 98–138, and #70, pp. 154–178, Pitman, London, 1982.
[10] These de 3-eme cycle, September, 1982.
[11] DiPerna, Comm. Math. Physics. 108 pp 00– (1987)
[12] and , Reduced Hausdorff dimension and concentration-cancellation for 2-D incompressible flow, preprint September 1986 to appear in the first issue of the J.A.M.S.
[13] and , Solutions globales avec nappe de tourbillon pour les equations d’Euler dans le plan, preprint, Ecole Polytechnique, December 1985.
[14] Real Analysis, Wiley, New York, 1985.
[15] Hald, S.I.A.M. J. Num. Anal. 16 pp 726– (1979)
[16] Krasny, J. Comp. Phys. 65 pp 2– (1986) · Zbl 0591.76059 · doi:10.1016/0021-9991(86)90210-X
[17] Computation of vortex sheet roll-up in the Trefftz plane, preprint April 1986.
[18] The concentration-compactness principle in the calculus of variations, the locally compact case, parts I and II, Ann. Inst., H. Poincaré, I, 1984, pp. 109–145 and pp. 223–283.
[19] The concentration-compactness principle in the calculus of variations, the limit case, parts I and II, Riv. Mat. Iberoamericana I, 1984, pp. 145–201 and
[20] Ann. Inst. pp 45– (1985)
[21] Majda, Comm. Pure Appl. Math. 39 pp 187– (1986)
[22] McGrath, Arch. Rational Mech. Ana. 27 pp 328– (1968)
[23] Saffman, Ann. Rev. Fluid Mech. pp 95– (1979)
[24] Sulem, Comm. Math. Phys. 80 pp 485– (1981)
[25] The Navier Stokes Equations, North Holland, Amsterdam, 2nd Edition, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.