Chu, E. K.; Datta, B. N. Numerically robust pole assignment for second-order systems. (English) Zbl 0850.93318 Int. J. Control 64, No. 6, 1113-1127 (1996). Cited in 28 Documents MSC: 93B55 Pole and zero placement problems 93B35 Sensitivity (robustness) Software:Matlab PDF BibTeX XML Cite \textit{E. K. Chu} and \textit{B. N. Datta}, Int. J. Control 64, No. 6, 1113--1127 (1996; Zbl 0850.93318) Full Text: DOI References: [1] BALAS M.J., IEEE Transactions on Automatic Control 27 pp 522– (1982) · Zbl 0496.93007 [2] BHAYA A., IEEE Transactions on Automatic Control 30 pp 1118– (1985) · Zbl 0574.93044 [3] CHU K.E., International Journal of Control 59 pp 471– (1993) · Zbl 0781.93036 [4] DATTA B.N., Linear Algebra Application 197 pp 755– (1994) · Zbl 0798.15015 [5] DATTA B.N., Linear Algebra Application (1996) [6] DATTA B.N., Linear Algebra Applications 188 pp 135– (1993) · Zbl 0778.65047 [7] DATTA B.N., Linear Algebra Application 154 pp 225– (1991) · Zbl 0734.65037 [8] GOHBERG I., Matrix Polynomials (1982) · Zbl 0482.15001 [9] GOLUB G. H., Matrix Computations, (1989) · Zbl 0733.65016 [10] HO , D.W.C. , and CHAN , H.C. , 1993 , Feedback stabilisation of damped-gyroscopic second-order systems. Research Report , Faculty of Science and Technology, City University , Hong Kong , Report No. MA-93-14. [11] JOSHI S.M., Control of Large Flexible Space Structures 131 (1989) · Zbl 0762.93001 [12] JUANG J., Mechanics and Control of Large Flexible Structures 129 pp 373– (1990) [13] KAUTSKY J., International Journal of Control 41 pp 1129– (1985) · Zbl 0567.93036 [14] MathWorks, MATLAB Users’ Guide. (1989) [15] MEIROVITCH L., Dynamics and Control of Structures (1990) · Zbl 0709.73048 [16] MEIROVITCH L., Journal of Guidance 6 pp 302– (1983) · Zbl 0512.93012 [17] RINCÓN , F. , 1992 , Feedback stabilisation of second-order models. Ph.D. dissertation , Northern Illinois University , De Kalb , Illinois , U.S.A. [18] SAAD Y., IEEE Transactions on Automatic Control 33 pp 290– (1988) · Zbl 0641.93031 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.