×

Exceptional units and numbers of small Mahler measure. (English) Zbl 0851.11064

Let \(\alpha\) be a unit of degree \(d\) in an algebraic number field and assume \(\alpha\) is not a root of unity. Let \(E (\alpha)\) be the number of values of \(n\) for which \(\alpha^n - 1\) is a unit and let \(U (\alpha)\) be the number of values of \(m\) for which \(\Phi_m (\alpha)\) is a unit, where \(\Phi_m (x)\) is the \(m\)th cyclotomic polynomial. The author proves that \(U (\alpha) \leq cd^{1 + 0.7/ \log \log d}\) where \(c\) is an effectively computable constant. This implies a similar estimate for \(E (\alpha)\). The proof is based on an explicit and useful lower bound for \(\Phi_m (\alpha)\). The paper also contains some interesting numerical results for \(\alpha\) of small Mahler measure which lead to the suggestion that perhaps \(U (\alpha) \leq c_1 (d/ \log M (\alpha)) + c_2\), where \(c_1\) and \(c_2\) are absolute constants. Examples of the reviewer are given which show that the first term here cannot be replaced by \(d \psi (d)/ \log M (\alpha)\) for any \(\psi (d) \to 0\) as \(d \to \infty\). Recently, C. Pinner has constructed some interesting examples to show that \(U (\alpha) = \Omega (d^{1/2})\). One simply notes that if \(\alpha\) is a root of the polynomial \(x + \prod_{m \leq N} \Phi_m (x)\), then \(\alpha\) is a unit of degree \(d \ll N^2\) and \(\Phi_m (\alpha)\) is a unit for all \(m \leq N\).

MSC:

11R27 Units and factorization
11Y40 Algebraic number theory computations
11D61 Exponential Diophantine equations
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11J68 Approximation to algebraic numbers

Software:

PARI/GP

References:

[1] Apostol T., Introduction to Analytic Number Theory (1976) · Zbl 0335.10001 · doi:10.1007/978-1-4757-5579-4
[2] Batut C., User’s Guide to Pari-GP.
[3] Blanksby P. E., Acta Arith. 18 pp 355– (1971)
[4] Bombieri E., -unit equations and the cluster principle’
[5] Boyd D., Duke Math. J. 44 pp 315– (1977) · Zbl 0353.12003 · doi:10.1215/S0012-7094-77-04413-1
[6] Boyd D., Math. Comp. 32 pp 1244– (1978) · doi:10.1090/S0025-5718-1978-0491587-8
[7] Boyd D., Math. Comp. 35 pp 1361– (1980) · doi:10.1090/S0025-5718-1980-0583514-9
[8] Cohen H., Experimental Math. pp 25– (1992)
[9] Dobrowolski E., Acta Arith. 34 pp 391– (1979)
[10] Evertse J.-H., Invent. Math. 75 pp 561– (1984) · Zbl 0521.10015 · doi:10.1007/BF01388644
[11] Hindry M., Invent. Math. 93 pp 419– (1988) · Zbl 0657.14018 · doi:10.1007/BF01394340
[12] Hindry M., Séminaire de Théorie des Nombres pp 103– (1990)
[13] Kronecker L., J. Reine Angew. Math. 53 pp 133– (1857)
[14] Laurent M., Séminaire de Théorie des Nombres pp 137– (1983)
[15] Lehmer D. H., Annals of Math. 34 pp 461– (1933) · Zbl 0007.19904 · doi:10.2307/1968172
[16] Masser D., Bull. Soc. Math. France 117 pp 247– (1989) · Zbl 0723.14026 · doi:10.24033/bsmf.2120
[17] 1977/78. ”Entiers algébriques dont les conjugués sont proches du cercle unité’.Séminaire Delange–Pisot–Poitou, 19 [Mignotte 1977], lecture 39
[18] Rausch U., Colloquium Math. 50 pp 137– (1985)
[19] Silverman J. H., ”Lehmer’s conjecture and primes of small norm’ (1994)
[20] Smyth C. J., Bull. London Math. Soc. pp 169– (1971) · Zbl 0235.12003 · doi:10.1112/blms/3.2.169
[21] Stewart C. L., Transcendence Theory: Advances and Applications pp 79– (1977)
[22] Stewart C. L., Bul. Soc. Math. France 196 pp 169– (1978) · Zbl 0396.12002 · doi:10.24033/bsmf.1868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.