×

zbMATH — the first resource for mathematics

On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary. (English) Zbl 0851.35067
Summary: We consider nonnegative solutions of initial-boundary value problems for parabolic equations \(u_t= u_{xx}\), \(u_t= (u^m)_{xx}\) and \(u_t= (|u_x|^{m- 1} u_x)_x\) \((m> 1)\) for \(x> 0\), \(t> 0\) with nonlinear boundary conditions \(- u_x= u^p\), \(-(u^m)_x= u^p\) and \(- |u_x|^{m- 1} u_x= u^p\) for \(x= 0\), \(t> 0\), where \(p> 0\). The initial function is assumed to be bounded, smooth and to have, in the latter two cases, compact support. We prove that for each problem there exist positive critical values \(p_0\), \(p_c\) (with \(p_0< p_c\)) such that for \(p\in (0, p_0]\), all solutions are global while for \(p\in (p_0, p_c]\) any solution \(a\not\equiv 0\) blows up in a finite time and for \(p> p_c\) small data solutions exist globally in time while large data solutions are nonglobal. We have \(p_c= 2\), \(p_c= m+ 1\) and \(p_c= 2m\) for each problem, while \(p_0= 1\), \(p_0= {1\over 2} (m+ 1)\) and \(p_0= 2m(m+ 1)\) respectively.

MSC:
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [BGK] F. V. Bunkin, V. A. Galaktionov, N. A. Kirichenko, S. P. Kurdyumov and A. A. Samarskii,Localization in an ignition problem, Doklady Akademii Nauk SSSR, Ser. Math.302 (1988), 68–71.
[2] [BL] C. Bandle and H. A. Levine,On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Transactions of the American Mathematical Society655 (1989), 494–624. · Zbl 0693.35081
[3] [F] A. Friedman,Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J., 1964. · Zbl 0144.34903
[4] [Fi] M. Fila,Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Commentationes Mathematicae Universitatis Carolinae30 (1989), 479–484. · Zbl 0702.35141
[5] [FQ] M. Fila and P. Quittner,The blow-up rate for the heat equation with a nonlinear boundary conditions, Mathematical Methods in the Applied Sciences14 (1991), 197–205. · Zbl 0735.35014 · doi:10.1002/mma.1670140304
[6] [G1] V. A. Galaktionov,On global nonexistence and localization of solutions to the Cauchy problem for some class of nonlinear parabolic equations, Z. Vychisl. Matem. i Matem. Fiz.23 (1983), 1341–1354; English transl.: USSR Comput. Math. and Math. Phys23 (1983), 36–44.
[7] [G2] V. A. Galaktionov,Blow-up for quasilinear heat equations with critical Fujita’s exponents, Proceedings of the Royal Society of Edinburgh124A (1994), 517–525. · Zbl 0808.35053
[8] [GKMS] V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov and A. A. Samarskii,On blowing-up solutions to the Cauchy problem for the parabolic equation u t=\(\Delta\)(u \(\rho\)\(\Delta\)u)+u \(\beta\),Doklady Akademii Nauk SSSR. Ser. Math. Phys.252 (1980), 1362–1364; English transl.: Soviet Physics Doklady25 (1980), 458–459.
[9] [GKS] V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii,On the method of stationary states for quasilinear parabolic equations, Matematicheskii Sbornik180 (1989), 995–1016; English transl.: Mathematics of the USSR-Sbornik67 (1990), 449–471.
[10] [GP] B. H. Gilding and L. A. Peletier,On a class of similarity solutions of the porous media equation, Journal of Mathematical Analysis and Applications55 (1976), 351–364. · Zbl 0356.35049 · doi:10.1016/0022-247X(76)90166-9
[11] [K] A. S. Kalashnikov,Some problems of the qualitative theory of nonlinear degenerate parabolic equations of second order, Uspekhi Matematicheskikh Nauk42 (1987), 135–176; English transl.: Russian Mathematical Surveys42 (1987), 169–222. · Zbl 0642.35047
[12] [L1] H. A. Levine,Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Pu t=u+F(u), Archive for Rational Mechanics and Analysis51 (1973), 371–386. · Zbl 0278.35052 · doi:10.1007/BF00263041
[13] [L2] H. A. Levine,The role of critical exponents in blow up theorems, SIAM Review32 (1990), 262–288. · Zbl 0706.35008 · doi:10.1137/1032046
[14] [LaP] M. Langlais and D. Phillips,Stabilization of solutions of nonlinear degenerate evolution equations, Nonlinear Analysis. Theory, Methods & Applications9 (1985), 321–333. · Zbl 0583.35059 · doi:10.1016/0362-546X(85)90057-4
[15] [LP] H. A. Levine and L. E. Payne,Nonexistence theorems for the heat equation with non-linear boundary conditions and for the porous medium equation backward in time, Journal of Differential Equations16 (1974), 319–334. · Zbl 0285.35035 · doi:10.1016/0022-0396(74)90018-7
[16] [SGKM] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov,Blow-up in Quasilinear Parabolic Equations, Nauka, Moscow, 1987 (in Russian; English transl: Walter de Gruyter, Berlin, 1995).
[17] [S] D. H. Sattinger,Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics309, Springer-Verlag, New York, 1973. · Zbl 0248.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.