×

zbMATH — the first resource for mathematics

Unique solutions of \(2\times 2\) conservation laws with large data. (English) Zbl 0852.35092
For a \(2\times 2\) hyperbolic system of conservation laws, a Riemann problem with arbitrarily large data is first considered. A stability assumption is introduced, which yields the existence of a Lipschitz semigroup of solutions, defined on a domain containing all suitably small BV perturbations of the Riemann data. A uniqueness result for large BV solutions is then established. This result is valid within the same class of functions where the existence theorem is proved.

MSC:
35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI