×

zbMATH — the first resource for mathematics

Estimate of convergence rate in local limit theorem for the particle number in spin systems. (English. Russian original) Zbl 0852.60107
Theor. Math. Phys. 95, No. 3, 738-747 (1993); translation from Teor. Mat. Fiz. 95, No. 3, 497-512 (1993).
Summary: For classical lattice spin systems with vacuum, an estimate is obtained of the convergence rate in a local limit theorem for the number of particles in a region \(\Lambda\). The estimate has the order of the square root of the volume of \(\Lambda\).
MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. A. Arzumanyan, B. S. Nakhapetyan, and S. K. Pogosyan,Teor. Mat. Fiz.,67, 21 (1986).
[2] V. A. Arzumanyan, B. S. Nakhapetyan, and S. K. Pogosyan,Teor. Mat. Fiz.,81, 175 (1989).
[3] V. A. Arzumanyan, B. S. Nakhapetyan, and S. K. Pogosyan,Teor. Mat. Fiz.,89, 178 (1991).
[4] V. A. Arzumanian, B. S. Nahapetian, S. K. Pogosian,Acta Applicandae Mathematicae,22, 33 (1991).
[5] S. K. Pogosian,Random Fields, Rigorous Results in Statistical Mechanics and Quantum Field Theory, Estergom, Hungary (1979), p. 889.
[6] S. K. Pogosian,Commun. Math. Phys.,95, 227 (1984). · Zbl 0579.60096 · doi:10.1007/BF01468143
[7] D. Ruelle,Statistical Mechanics, New York (1969).
[8] R. L. Dobrushin,Teor. Veroyatn. Ee Primen.,2, 201 (1968).
[9] R. L. Dobrushin,Funktsional Analiz i Ego Prilozhen.,4, 31 (1968).
[10] B. S. Nahapetian,Limit Theorems and Some Applications in Statistical Physics, Teubner-Texte zur Mathematik, Stuttgart-Leipzig (1991). · Zbl 0729.60015
[11] I. A. Ibragimov and Yu. V. Linnik,Independent and Steadily Coupled Variables [in Russian], Nauka, Moscow (1965). · Zbl 0154.42201
[12] R. L. Dobrushin and B. S. Nakhapetyan,Teor. Mat. Fiz.,20, 223 (1974).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.