Lu, Chin-Pi Spectra of modules. (English) Zbl 0853.13011 Commun. Algebra 23, No. 10, 3741-3752 (1995). Generalizing the usual notion of spectrum of a ring the author studies spectra of modules. He examines the relationship with the spectrum of the ring and obtains e.g. criteria when the canonical map from the spectrum of a module of the spectrum of the ground ring is surjective or bijective. He also gives an example of a non-zero module with an empty spectrum. Reviewer: H.Flenner (Göttingen) Cited in 1 ReviewCited in 55 Documents MSC: 13C99 Theory of modules and ideals in commutative rings 13A15 Ideals and multiplicative ideal theory in commutative rings Keywords:spectrum of module; prime submodule; canonical map PDF BibTeX XML Cite \textit{C.-P. Lu}, Commun. Algebra 23, No. 10, 3741--3752 (1995; Zbl 0853.13011) Full Text: DOI References: [1] DOI: 10.1016/0021-8693(81)90112-5 · Zbl 0468.13011 [2] Bourbaki N., Algèbre (1958) [3] Bourbaki N., Algèbre commutative (1961) · Zbl 0108.04002 [4] DOI: 10.1080/00927878808823601 · Zbl 0642.13002 [5] Jain R. K., Riv. Mat. Univ. Parma 7 pp 461– (1981) [6] Kaplansky I., Commutative rings (1970) [7] Lee S. C., J. Korean Math. Soc. 28 pp 1– (1991) [8] Lu C. P., Comment. Math. Univ. St. Paul 33 pp 61– (1984) [9] Lu C. P., Math. Japon. 34 pp 211– (1989) [10] DOI: 10.1080/00927879208824432 · Zbl 0776.13007 [11] DOI: 10.1017/CBO9780511565922 [12] Sharp R. Y., Steps in commutative algebra (1990) · Zbl 0703.13001 [13] DOI: 10.1016/0021-8693(75)90074-5 · Zbl 0319.16025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.