Clusters of infinitely near points. (English) Zbl 0853.14002

The authors further develop the Zariski-Lipman theory of finitely supported complete (f.s.c.) ideals from the geometric point of view of clusters of infinitely near points. The main results are: a combinatorial characterization of the proximity relation as a generalized Enriques diagram; an explicit description of the monoid of f.s.c. monomial ideals as a polyhedral cone; a construction of such ideals by means of Newton polytopes; and the existence of a natural embedded resolution of a general complete intersection singularity associated to an f.s.c. ideal.


14B10 Infinitesimal methods in algebraic geometry
14A05 Relevant commutative algebra
14L30 Group actions on varieties or schemes (quotients)
Full Text: DOI EuDML


[1] [C.G.L] Campillo A., Gonzalez-Sprinberg G., Lejeune-Jalabert M.: Amas, idéaux à support fini et chaînes toriques. C.R. Acad. Sci. Paris Sér. I Math.315 (1992) 987-990 · Zbl 0791.14001
[2] [C.R] Campillo A., Reguera A.J.: Combinatorial aspects of sequences of points blowingups. Manuscripta Math.84 (1994) 29-46 · Zbl 0829.14007
[3] [Ca] Casas E.: Infinitely near imposed singularities. Math. Ann.287 (1990) 429-454 · Zbl 0675.14009
[4] [D] Demazure M.: Surfaces de Del Pezzo I, Séminaire sur les singularités des surfaces. Lecture Notes in Mathematics777, Springer-Verlag, 1980
[5] [D.O] Dolgachev I., Ortland D.: Point space in projective spaces and theta functions. Astérisque165, 1988 · Zbl 0685.14029
[6] [DV] Du Val P.: Reducible exceptional curves. Amer. J. Math.58 (1936) 285-289 · Zbl 0014.13102
[7] [E.C] Enriques F., Chisini O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, 1915 (CM5 Zanichelli 1985) Libro IV · Zbl 0009.15904
[8] [F.MP] Fulton W., Mac Pherson R.: A compactification of configuration spaces. Ann. of Math.139 (1994) 183-225 · Zbl 0820.14037
[9] [J] Jouanolou J.P.: Théorèmes de Bertini et applications. Progress in Mathematics, Birkhäuser, 1983 · Zbl 0519.14002
[10] [K] Kleiman S.: Toward a numerical theory of ampleness. Ann. of Math.84 (1966) 293-344 · Zbl 0146.17001
[11] [Kh] Khovanskii A.G.: Newton polyhedra and toroidal varieties. Funct. Anal. and its Appl.11, no 4 (1977) 56-64
[12] [L1] Lipman J.: Rational singularities with applications to algebraic surfaces and unique factorization. Publ. IHES36 (1969) 195-279 · Zbl 0181.48903
[13] [L2] Lipman J.: On complete ideals in regular local rings. Algebraic geometry and commutative algebra in honor of M. Nagata, (1987) 203-231
[14] [L3] Lipman J.: Proximity inequalities for complete ideals in two-dimensional regular local rings. (Comm. Alg. Week Mount Holyoke College 1992, Proceedings to appear in Contemporary Math.)
[15] [LJ] Lejeune-Jalabert M.: Linear systems with infinitely near base conditions and complete ideals in dimension two. College on Singularity Theory ICTP Trieste, 1991, World Scientific, 1995
[16] [O] Oda T.: Convex bodies and algebraic geometry, an introduction to the theory of toric varieties. Ergebnisse der Math.15, Springer Verlag, 1988 · Zbl 0628.52002
[17] [R] Reid M.: Decomposition of toric morphisms. Arithmetic and Geometry. Papers dedicated to I.R. Shafarevitch on the occasion of his sixtieth birthday, Prog. Math. Birkhäuser Boston36 (1983) 395-418
[18] [S] Spivakovsky M.: Valuations in function fields of surfaces. Amer. J. Math.112 (1990) 107-156 · Zbl 0716.13003
[19] [T.E.] Kempf G., Knudsen F., Mumford D., Saint Donat B.: Toroïdal embeddings I. Lecture Notes in Mathematics339, Springer, 1973
[20] [V] Varchenko A.N.: Zeta-function of monodromy and Newton’s diagram. Invent. Math.37 (1976) 253-262 · Zbl 0434.14017
[21] [Z1] Zariski O.: Algebraic surfaces, (1934) Second supplemented edition (1971) Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Chapter II and Appendix to chapter II by J. Lipman
[22] [Z2] Zariski O.: Polynomial ideals defined by infinitely near base points. Amer. J. Math.60 (1938) 151-204 · JFM 64.0079.01
[23] [Z.S] Zariski O., Samuel P.: Commutative Algebra II. Appendix 5, Van Nostrand, 1960 · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.