On the stability of mappings and an answer to a problem of Th. M. Rassias. (English) Zbl 0853.46036

Summary: The main purpose of this paper is to prove a theorem concerning the Hyers-Ulam stability of mappings, which gives a generalization of the results from [the first author, J. Math. Anal. Appl. 184, No. 3, 431-436 (1994; Zbl 0818.46043)] and [Th. M. Rassias, ibid. 158, No. 1, 106-113 (1991; Zbl 0746.46038)]. It also answers a problem posed by Th. M. Rassias [loc. cit.].


46G05 Derivatives of functions in infinite-dimensional spaces
Full Text: DOI Numdam EuDML


[1] Găvruţa, P., A generalization of the HYERS-ULAM-RASSIAS stability of approximately additive mappings ,Journal of Math. Analysis and Appl.184 (1994), 431-436. · Zbl 0818.46043
[2] Hyers, D.H.AND Rassias, Th.M., Approximate homomorphisms , Aequationes Math.44 (1992), 125-153. · Zbl 0806.47056
[3] Rassias, Th.M., On a modified HYERS-ULAM sequence , Journal of Math. Analysis and Appl.158 (1991), 106-113. · Zbl 0746.46038
[4] Ulam, S.M., Problems in modern mathematics, chap. VI, Science eds. ,Wiley, New York, 1960. · Zbl 0137.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.