×

Opérades cellulaires et espaces de lacets itérés. (Cellular operads and iterated loop spaces.). (French) Zbl 0853.55007

Summary: The configuration space of \(p\)-tuples of pairwise distinct points in \(\mathbb{R}^\infty\) carries a natural filtration coming from the inclusions of the \(\mathbb{R}^n\) into \(\mathbb{R}^\infty\). We characterize the homotopy type of this filtration by the combinatorial properties of an underlying cellular structure and establish a close relationship to May’s theory of \(E_n\)-operads. This gives a unified approach to the different known combinatorial models of iterated loop spaces reproving by the way the approximation theorems of Milgram, Smith and Kashiwabara.

MSC:

55P35 Loop spaces
20B30 Symmetric groups
06A07 Combinatorics of partially ordered sets
52B12 Special polytopes (linear programming, centrally symmetric, etc.)

References:

[1] [1] , , et , Iterated monoidal categories, preprint (1995).
[2] [2] , Geometry of loop spaces and the cobar-construction, Mem. of the Amer. Math. Soc., 230 (1980). · Zbl 0473.55009
[3] [3] et , Γ+-Structures I, II, III, Topology, 13 (1974), 25-45, 113-126, 199-207. · Zbl 0304.55010
[4] [4] , Un groupoïde simplicial comme modèle de l’espace des chemins, Bull. Soc. Math. France, 123 (1995), 1-32. · Zbl 0820.18005
[5] [5] et , On puzzles and polytope isomorphism, Aequationes Math., 34 (1987), 287-297. · Zbl 0634.52005
[6] [6] et , Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer Verlag (1973). · Zbl 0285.55012
[7] [7] , The homology of Cn+1-spaces, Lecture Notes in Math. 533, Springer Verlag (1976), 207-351. · Zbl 0334.55009
[8] [8] , et , Splitting of certain spaces CX, Math. Proc. Camb. Phil. Soc., 84 (1978), 465-496. · Zbl 0408.55006
[9] [9] , Tensor product of operads and iterated loop spaces, Journal of Pure and Applied Algebra, 50 (1988), 237-258. · Zbl 0672.55004
[10] [10] et , The braid groups, Math. Scand., 10 (1962), 119-126. · Zbl 0117.41101
[11] [11] , The permutoassociahedron, MacLane’s coherence theorem and asymptotic zones for KZ equation, Journal of Pure and Applied Algebra, 85 (1993), 119-142. · Zbl 0812.18003
[12] [12] , On the Homotopy Type of Configuration Complexes, Contemporary Math., 146 (1993), 159-170. · Zbl 0802.55004
[13] [13] , The Geometry of iterated loop spaces, Lecture Notes in Math., 277, Springer Verlag (1972). · Zbl 0244.55009
[14] [14] , E∞-spaces, group completions and permutative categories, London Math. Soc. Lecture Notes, 11 (1974), 61-94. · Zbl 0281.55003
[15] [15] , Iterated loop spaces, Annals of Math., 84 (1966), 386-403. · Zbl 0145.19901
[16] [16] , Higher algebraic K-theory I, Lecture Notes in Math., 341, Springer Verlag (1973), 85-147. · Zbl 0292.18004
[17] [17] , Configuration spaces and iterated loop spaces, Inventiones Math., 21 (1973), 213-221. · Zbl 0267.55020
[18] [18] , Simplicial Group Models for ΩnSnX, Israel Journal of Math., 66 (1989), 330-350. · Zbl 0723.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.