Convergence of the heat kernel and the resolvent kernel on degenerating hyperbolic Riemann surfaces of finite volume. (English) Zbl 0853.58099

The authors study the limiting behaviour of the heat kernel on a degenerating family of hyperbolic Riemannian surfaces of finite volume. They prove that the heat kernels from surfaces in such a family converge to the heat kernel associated to the limiting surface.
Reviewer: H.Baum (Berlin)


58J35 Heat and other parabolic equation methods for PDEs on manifolds
35K05 Heat equation
Full Text: DOI


[1] Abikoff W., The real analytic theory of Teichmüller space (1980) · Zbl 0452.32015
[2] DOI: 10.2307/1971024 · Zbl 0347.32010
[3] Beardon A. F., On the Geometry of Discrete Groups (1983) · Zbl 0528.30001
[4] Berline N., Heat Kernels and Dirac Operators, Grundelhren der mathematischen Wissenschaften 298 (1992) · Zbl 0744.58001
[5] Chavel I., Eigenvalues in Riemannian Geometry (1984)
[6] Clemens C. H., Duke Math. J. pp 215– (1977)
[7] DOI: 10.1007/BF02564681 · Zbl 0684.53040
[8] Farkas H., Riemann surfaces, Graduate Texts in Mathematics 71 (1980) · Zbl 0475.30001
[9] Fay J. D., Theta functions on Riemann Surfaces (1973) · Zbl 0281.30013
[10] Hejhal D. A., Regular b-groups, degenerating Riemann surfaces, and spectral theory (1990) · Zbl 0718.11024
[11] Hejhal D. A., A continuity method for spectral theory on Fuchsian groups pp 107– (1984) · Zbl 0559.10016
[12] Hejhal D. A., The Selberg Trace Formula for PSL 2 (1983) · Zbl 0543.10020
[13] Iwaniec H., Non-holomorphic modular forms and their applications pp 157– (1984) · Zbl 0558.10018
[14] DOI: 10.1007/BF02571664 · Zbl 0792.53040
[15] Jorgenson J., Convergence theorems for relative spectral functions on degenerating hyperbolic Riemann surfaces of finite volume (1992)
[16] Jorgenson J., Absolute spectral functions for hyperbolic Riemann surfaces of finite volume (1992)
[17] DOI: 10.1215/S0012-7094-93-07109-8 · Zbl 0790.58044
[18] Wolf M., J. Diff. Geom. 33 pp 487– (1991)
[19] DOI: 10.1007/BF01217814 · Zbl 0629.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.