On the asymptotic properties of a flexible hazard estimator. (English) Zbl 0853.62030

Summary: Suppose one has a stochastic time-dependent covariate \(Z(t)\), and is interested in estimating the hazard relationship \(\lambda (t \mid \overline Z(t)) = \omega (Z(t))\), where \(\overline Z(t)\) denotes the history of \(Z(t)\) up to and including time \(t\). We consider a model of the form \(\exp (s_n (Z(t)))\), where \(s_n (Z(t))\) is a spline of finite but arbitrary order, and investigate the behavior of the maximum likelihood estimator of the hazard as the number of knots in the spline function increases with the sample size at some rate \(k_n = o(n)\).
For twice continuously differentiable \(\omega (\cdot)\), we demonstrate that the difference between the estimator \(\exp (s_n (\cdot))\) and \(\omega (\cdot)\) goes to 0 in probability in sup-norm for any \(k_n = n^\varphi\), \(\varphi \in (0,1)\). In addition, if \(\varphi > 1/5\), then \(\exp (\widehat s_n (Z(t))) - \omega (Z(t))\), properly normalized, is asymptotically standard normal. A large sample approximation to the variance is derived in the case where \(s_n (\cdot)\) is a linear spline, and exposes some rather interesting behavior.


62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62F12 Asymptotic properties of parametric estimators
60G44 Martingales with continuous parameter
62M99 Inference from stochastic processes
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI


[1] AALEN, O. 1978. Nonparametric inference for a family of counting processes. Ann. Statist. 6 701 726. Z. · Zbl 0389.62025 · doi:10.1214/aos/1176344247
[2] ANDERSEN, P. K. and GILL, R. D. 1982. Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 1100 1120. Z. · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[3] APOSTOL, T. M. 1957. Mathematical Analy sis. Addison-Wesley, Reading, MA. Z. · Zbl 0077.05501
[4] BRILLINGER, D. R. 1980. Time Series: Data Analy sis and Theory. Holden-Day, San Francisco. Z. · Zbl 0542.62077
[5] CHUNG, K. L. 1974. A Course in Probability Theory, 2nd ed. Academic Press, New York. Z. · Zbl 0345.60003
[6] DE BOOR, C. 1978. A Practical Guide to Splines. Springer, New York. Z. · Zbl 0406.41003
[7] DEMKO, S. 1977. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal. 14 616 619. Z. JSTOR: · Zbl 0367.65024 · doi:10.1137/0714041
[8] FELLER, W. 1971. An Introduction to Probability Theory and Its Applications, 2nd ed. Wiley, New York. Z. · Zbl 0219.60003
[9] FLEMING, T. R. and HARRINGTON, D. P. 1991. Counting Processes and Survival Analy sis. Wiley, New York. Z.
[10] FOUTZ, R. V. 1977. On the unique consistent solution to the likelihood equations. J. Amer. Statist. Assoc. 72 147 148. Z. JSTOR: · Zbl 0354.62029 · doi:10.2307/2286925
[11] GOLUB, G. and VAN LOAN, C. F. 1989. Matrix Computations. Johns Hopkins Univ. Press. Z. · Zbl 0733.65016
[12] GRAy BILL, F. A. 1983. Matrices with Applications in Statistics, 2nd ed. Wadsworth, Belmont, CA.Z. · Zbl 0496.15002
[13] HJORT, N. L. 1992. On inference in parametric survival data models. Internat. Statist. Rev. 60 355 387. Z. · Zbl 0762.62009 · doi:10.2307/1403683
[14] KALBFLEISCH, J. D. and PRENTICE, R. L. 1980. The Statistical Analy sis of Failure Time Data. Wiley, New York. Z. · Zbl 0504.62096
[15] KOOPERBERG, C. K., STONE, C. J. and TRUONG, Y. K. 1995a. Hazard regression. J. Amer. Statist. Assoc. 90 78 94. Z. JSTOR: · Zbl 0818.62097 · doi:10.2307/2291132
[16] KOOPERBERG, C. K., STONE, C. J. and TRUONG, Y. K. 1995b. The L rate of convergence for 2 hazard regression. Scand. J. Statist. 22 143 158. Z. · Zbl 0839.62050
[17] PORTNOY, S. 1988. Asy mptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. Ann. Statist. 16 356 366. Z. · Zbl 0637.62026 · doi:10.1214/aos/1176350710
[18] RUDIN, W. 1964. Principles of Mathematical Analy sis. McGraw-Hill, New York. Z.
[19] SCHUMAKER, L. 1981. Spline Functions: Basic Theory. Wiley, New York. Z. · Zbl 0449.41004
[20] SERFLING, R. J. 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York. Z. · Zbl 0538.62002
[21] SPECKMAN, P. 1985. Spline smoothing and optimal rates of convergence in nonparametric regression models. Ann. Statist. 13 970 983. Z. · Zbl 0585.62074 · doi:10.1214/aos/1176349650
[22] STONE, C. J. 1980. Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348 1360. Z. · Zbl 0451.62033 · doi:10.1214/aos/1176345206
[23] STONE, C. J. 1982. Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040 1053. Z. · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[24] STONE, C. J. 1986. The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590 606. · Zbl 0603.62050 · doi:10.1214/aos/1176349940
[25] STONE, C. J. 1990. Large-sample inference for log-spline models. Ann. Statist. 18 717 741. Z. · Zbl 0712.62036 · doi:10.1214/aos/1176347622
[26] STONE, C. J. 1991. Asy mptotics for doubly flexible log-spline response models. Ann. Statist. 19 1832 1854. Z. · Zbl 0785.62034 · doi:10.1214/aos/1176348373
[27] STONE, C. J. 1994. The use of poly nomial splines and their tensor products in multivariate Z. function estimation with discussion. Ann. Statist. 22 118 184. Z. · Zbl 0827.62038 · doi:10.1214/aos/1176325361
[28] STRAWDERMAN, R. L. 1992. Statistical methods in the surrogate marker problem. Sc.D. dissertation, Harvard School of Public Health. Z.
[29] STRAWDERMAN, R. L. and TSIATIS, A. A. 1995. On consistency in parameter spaces of expanding dimension: an application of the inverse function theorem. Statist. Sinica. · Zbl 0897.62023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.