zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evaluating infinite integrals involving products of Bessel functions of arbitrary order. (English) Zbl 0853.65028
The numerical evaluation of integrals with products of Bessel functions is considered. The oscillatory behaviour of the product of the Bessel function may be very irregular, and transform techniques are not always efficient in that case. After a few analytical steps the integral is split up into integrals with more regular behaviour. Numerical results show the efficiency of the method.

MSC:
65D32Quadrature and cubature formulas (numerical methods)
33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
41A55Approximate quadratures
65D20Computation of special functions, construction of tables
Software:
QUADPACK
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1972) · Zbl 0543.33001
[2] Davis, A. M. J.: Drag modifications for a sphere in a rotational motion at small non-zero Reynolds and Taylor numbers: wake interference and possible Coriolis effects. J. fluid mech. 237, 13-22 (1992) · Zbl 0753.76186
[3] . (1991)
[4] Linz, P.; Kropp, T. E.: A note on the computation of integrals involving products of trigonometric and Bessel functions. Math. comp. 27, 871-872 (1973) · Zbl 0271.65017
[5] Lucas, S. K.; Stone, H. A.: Evaluating infinite integrals involving Bessel functions of arbitrary order. J. comput. Appl. math. 64, No. 3, 217-231 (1995) · Zbl 0857.65025
[6] Lyness, J. N.: Integrating some infinite oscillating tails. J. comput. Appl. math. 12&13, 109-117 (1985) · Zbl 0574.65013
[7] Olver, F. W. J.: Royal society mathematical tables vol. 7, Bessel functions part III, zeros and associated values. 7 (1960) · Zbl 0094.31603
[8] Piessens, R.; De Doncker-Kapenga, E.; Uberhuber, C. W.; Kahaner, D. K.: QUADPACK, a subroutine package for automatic integration. (1983) · Zbl 0508.65005
[9] Sidi, A.: A user-friendly extrapolation method for oscillatory infinite integrals. Math. comp. 51, 249-266 (1988) · Zbl 0694.40004
[10] H.A. Stone and H.M. McConnell, Hydrodynamics of quantized shape transitions of lipid domains, Proc. Roy. Soc. London, to appear. · Zbl 0821.76003
[11] Tanzosh, J.; Stone, H. A.: Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. fluid. Mech. 275, 225-256 (1994) · Zbl 0815.76088
[12] Tezer, M.: On the numerical evaluation of an oscillating infinite series. J. comput. Appl. math. 28, 383-390 (1989) · Zbl 0684.65003
[13] Wong, R.: Asymptotic expansion of $\int 0$ x 2Jv2({$\lambda$}cos${\theta})d{\theta}$. Math. comp. 50, 229-234 (1988) · Zbl 0644.41020