×

zbMATH — the first resource for mathematics

Asymptotic completeness for \(N\leq 4\) particle systems with the Coulomb-type interactions. (English) Zbl 0853.70010

MSC:
70F10 \(n\)-body problems
78A35 Motion of charged particles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry , Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. · Zbl 0619.47005
[2] J.-M. Combes, Relatively compact interactions in many particle systems , Comm. Math. Phys. 12 (1969), 283-295. · Zbl 0174.28304 · doi:10.1007/BF01667314
[3] V. Enss, Quantum scattering theory for two- and three-body systems with potentials of short- and long- range , Schrödinger Operators (Como, 1984) ed. S. Graffi, Lecture Notes in Math., vol. 1159, Springer-Verlag, Berlin, 1985, pp. 39-176. · Zbl 0585.35023
[4] G.-M. Graf, Asymptotic completeness for \(N\)-body short-range quantum systems: a new proof , Comm. Math. Phys. 132 (1990), no. 1, 73-101. · Zbl 0726.35096 · doi:10.1007/BF02278000
[5] L. Hörmander, The Analysis of Linear Partial Differential Operators IV , Grundlehren Math. Wiss, vol. 275, Springer-Verlag, Berlin, 1985. · Zbl 0612.35001
[6] T. Kato, Fundamental properties of Hamiltonian operators of Schrödinger type , Trans. Amer. Math. Soc. 70 (1951), 195-211. JSTOR: · Zbl 0044.42701 · doi:10.2307/1990366 · links.jstor.org
[7] T. Kato, Wave operators and similarity for some non-selfadjoint operators , Math. Ann. 162 (1965/1966), 258-279. · Zbl 0139.31203 · doi:10.1007/BF01360915 · eudml:161339
[8] H. Kitada, Asymptotic completeness of \(N\)-body wave operators I. Short-range quantum systems , Rev. Math. Phys. 3 (1991), no. 1, 101-124. · Zbl 0731.35076 · doi:10.1142/S0129055X91000047
[9] E. Mourre, Operateurs conjugués et propriétés de propagation , Comm. Math. Phys. 91 (1983), no. 2, 279-300. · Zbl 0543.47041 · doi:10.1007/BF01211163
[10] P. Perry, Propagation of states in dilation analytic potentials and asymptotic completeness , Comm. Math. Phys. 81 (1981), no. 2, 243-259. · Zbl 0471.47007 · doi:10.1007/BF01208898
[11] 1 M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness , Academic Press, New York, 1975. · Zbl 0308.47002
[12] 2 M. Reed and B. Simon, Methods of Modern Mathematical Physics III , Academic Press, New York, 1979. · Zbl 0405.47007
[13] I. M. Sigal, Mathematical questions of quantum many-body theory , Séminaire sur les équations aux dérivées partielles 1986-1987, École Polytech., Palaiseau, 1987, Exp. No. XXIII, 24. · Zbl 0656.35133 · numdam:SEDP_1986-1987____A22_0 · eudml:111922
[14] I. M. Sigal, On long-range scattering , Duke Math. J. 60 (1990), no. 2, 473-496. · Zbl 0725.35071 · doi:10.1215/S0012-7094-90-06019-3
[15] I. M. Sigal and A. Soffer, The \(N\)-particle scattering problem: asymptotic completeness for short-range systems , Ann. of Math. (2) 126 (1987), no. 1, 35-108. JSTOR: · Zbl 0646.47009 · doi:10.2307/1971345 · links.jstor.org
[16] I. M. Sigal and A. Soffer, Asymptotic completeness of multiparticle scattering , Differential Equations and Mathematical Physics (Birmingham, Ala., 1986) eds. I. W. Knowles and Y. Saito, Lecture Notes in Math., vol. 1285, Springer-Verlag, Berlin, 1987, pp. 435-472. · Zbl 0651.35071 · doi:10.1007/BFb0080623
[17] I. M. Sigal and A. Soffer, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials , Invent. Math. 99 (1990), no. 1, 115-143. · Zbl 0702.35197 · doi:10.1007/BF01234413 · eudml:143752
[18] I. M. Sigal and A. Soffer, Local decay and velocity bounds ,
[19] I. M. Sigal and A. Soffer, Asymptotic completeness for Coulomb-type \(3\)-body systems , preprint, Princeton Univ, 1991. · Zbl 0853.70010
[20] A. G. Sigalov and I. M. Sigal, Description of the spectrum of the energy operator of quantum mechanical systems , Theoret. and Math. Phys. 5 (1970), 990-1005.
[21] K. Sinha and Pl. Muthuramalingam, Asymptotic evolution of certain observables and completeness in Coulomb scattering I , J. Funct. Anal. 55 (1984), no. 3, 323-343. · Zbl 0531.47008 · doi:10.1016/0022-1236(84)90003-X
[22] H. Tamura, Propagation estimate for \(N\)-body quantum systems , Bull. Fac. Sci. Ibaraki Univ. Ser. A 22 (1990), 29-48. · Zbl 0751.47037 · doi:10.5036/bfsiu1968.22.29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.