zbMATH — the first resource for mathematics

Solution of generalized Stokes problems using hierarchical methods and incremental unknowns. (English) Zbl 0853.76044
Summary: We present a nonstandard hierarchization of the MAC meshing associated with a second order finite difference discretization for the solution of generalized Stokes problems. Two families of hierarchization are considered: one for the components of the velocity (\(u\) and \(v\)) and one for the pressure \((p)\). The introduction of the incremental unknowns on the pressure is proposed as an efficient hierarchical preconditioner of the Uzawa operator. We give numerical results concerning the solution of generalized Stokes problem in a driven square cavity. These results point out a much better speed of convergence for the new method than the classical one.

76M20 Finite difference methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI Link
[1] Bank, R.E.; Dupont, T.F.; Yserentant, H., The hierarchical basis multigrid method, Numer. math., 52, 427-458, (1988) · Zbl 0645.65074
[2] Chehab, J.P.; Temam, R., Incremental unknowns for solving nonlinear eigenvalue problems. new multiresolution methods, Numer. methods partial differential equations, 11, 199-228, (1995) · Zbl 0828.65124
[3] Chehab, J.P., A nonlinear adaptative multiresolution method in finite differences with incremental unknowns, M^{2}an, 29, 451-475, (1995) · Zbl 0836.65114
[4] J.P. Chehab, Incremental unknowns method and compact schemes, to appear. · Zbl 0914.65110
[5] Chen, M.; Temam, R., Incremental unknowns for solving partial differential equations, Numer. math., 59, 255-271, (1991) · Zbl 0712.65103
[6] Chen, M.; Temam, R., Incremental unknowns in finite differences: condition number of the matrix, SIAM J. matrix anal. appl., 14, 432-455, (1993) · Zbl 0773.65080
[7] Chen, M.; Temam, R., Nonlinear Galerkin method in finite difference case and wavelet-like incremental unknowns, Numer. math., 64, 271-294, (1993) · Zbl 0798.65093
[8] Crouzeix, M., Approximation et méthodes itératives de résolution d’inéquations variationelles et de problèmes non linéaires, I.R.I.A., cahier, 12, 139-244, (1974)
[9] Fortin, M.; Glowinski, R., Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, (1983), North-Holland New York · Zbl 0525.65045
[10] Harlow; Welsh, Numerical calculation of time dependent viscous incompressible flow of fluid with a free surface, J. E. phys. fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[11] Laminie, J.; Meier, U., Solving Navier-Stokes equations on the cedar multi-cluster system, ()
[12] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. numer. anal., 26, 1139-1157, (1989) · Zbl 0683.65083
[13] Marion, M.; Temam, R., Nonlinear Galerkin methods: the finite elements case, Numer. math., 57, 205-226, (1990) · Zbl 0702.65081
[14] Peyret, R.; Taylor, R., Computational methods for fluid flow, () · Zbl 0514.76001
[15] Temam, R., Inertial manifolds and multigrid methods, SIAM J. math. anal., 21, 154-178, (1990) · Zbl 0715.35039
[16] Temam, R., Navier-Stokes equations, () · Zbl 0572.35083
[17] Yserentant, H., On multilevel splitting of finite element spaces, Numer. math., 49, 379-412, (1986) · Zbl 0608.65065
[18] Zhang, L.B., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.