Rachůnek, Jiří The semigroup of varieties of weakly associative lattice groups. (English) Zbl 0854.06025 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 34, 151-154 (1995). Summary: We prove that the varieties of weakly associative lattice groups form an ordered semigroup with one distributive law. Cited in 1 Document MSC: 06F15 Ordered groups 06B20 Varieties of lattices 06F05 Ordered semigroups and monoids 08B99 Varieties Keywords:varieties of weakly associative lattice groups; ordered semigroup × Cite Format Result Cite Review PDF References: [1] Glass A. M. W., Holland W. C., McCleary S.: The structure of l-group varieties. Alg. Univ. 10 (1980), 1-20. · Zbl 0439.06013 · doi:10.1007/BF02482885 [2] Fried E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. · Zbl 0224.06004 [3] Kurosch A. G.: Lectures on General Algebra. Fizmatgiz, Moscow, 1987 [4] Martinez J.: Varieties of lattice-ordered groups. Math. Z. 137 (1974), 265-284. · Zbl 0274.20034 · doi:10.1007/BF01214370 [5] Neumann H.: Varieties of Groups. Springer Verlag, New York, 1967. · Zbl 0251.20001 [6] Rachůnek J.: Semi-ordered groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 61 (1979), 5-20. [7] Rachůnek J.: Solid subgroups of weaky associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. · Zbl 0776.06016 [8] Rachůnek J.: On some varieties of weakly associative lattice groups. Czechoslovak Math. J. · Zbl 0870.06016 [9] Reilly N. R.: Varieties of lattice-ordered groups. Lattice-Ordered Groups (Advances and techniques) (eds. A. M. W. Glass and W.C. Holland), 228-277, Kluwer, Dordrecht-Boston-London, 1989. [10] Skala H.: Trellis Theory. Memoirs AMS, Providence, 1972. · Zbl 0242.06004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.