Friedlander, Eric M. Filtrations on algebraic cycles and homology. (English) Zbl 0854.14006 Ann. Sci. Éc. Norm. Supér. (4) 28, No. 3, 317-343 (1995). Summary: As shown by the author and B. Mazur [Mem. Am. Math. Soc. 529 (1994; Zbl 0841.14019)] Lawson homology theory determines natural filtrations on algebraic equivalence classes of algebraic cycles and on the singular integral homology groups of complex projective varieties. In this paper, the filtration on cycles is identified in terms of the images under correspondences of cycles homologically equivalent to zero. This is closely related to a filtration recently introduced by M. Nori. The author and B. Mazur conjectured that the filtration on (rational) homology groups was equal to the “geometric (or level) filtration” introduced by A. Grothendieck. It is shown here that this conjecture is implied by the validity of Grothendieck’s conjecture B. Both filtrations can be interpreted in terms of a spectral sequence whose various terms have a motivic nature. The two central constructions of the paper are the \(s\)-map (introduced by the author and B. Mazur) and the graph mapping. Various equivalent descriptions of the \(s\)-map are presented and some of its basic properties are verified. The graph mapping is an elementary construction on cycle spaces which enables one to extend classical constructions involving correspondences to singular varieties. Cited in 2 ReviewsCited in 10 Documents MSC: 14C25 Algebraic cycles 14F99 (Co)homology theory in algebraic geometry Keywords:Lawson homology; algebraic equivalence classes of algebraic cycles; singular integral homology; graph mapping; \(s\)-map Citations:Zbl 0841.14019 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] A. ANDREOTTI and T. FRANKEL , The Lefschetz theorem on hyperplane sections (Ann. of Math. (2), Vol. 59, 1959 , pp. 713-717). MR 31 #1685 | Zbl 0115.38405 · Zbl 0115.38405 · doi:10.2307/1970034 [2] S. BLOCH and A. OGUS , Gersten’s conjecture and the homology of schemes (Ann. Scient. Ec. Norm. Sup., 4e série, t. 7, 1974 , pp. 181-202). Numdam | MR 54 #318 | Zbl 0307.14008 · Zbl 0307.14008 [3] E. FRIEDLANDER , Algebraic cycles, Chow varieties, and Lawson homology (Compositio Mathematica, Vol. 77, 1991 , pp. 55-93). Numdam | MR 92a:14005 | Zbl 0754.14011 · Zbl 0754.14011 [4] E. FRIEDLANDER and O. GABBER , Cycle spaces and intersection theory (in Topological Methods in Modern Mathematics, 1993 , pp. 325-370). MR 94j:14010 | Zbl 0830.14008 · Zbl 0830.14008 [5] E. FRIEDLANDER and H. B. LAWSON , A theory of algebraic cocycles (Annals of Math., Vol. 136, 1992 , pp. 361-428). MR 93g:14013 | Zbl 0788.14014 · Zbl 0788.14014 · doi:10.2307/2946609 [6] E. FRIEDLANDER and B. MAZUR , Filtrations on the homology of algebraic varieties (Memoir of the A.M.S., Vol. 110, no. 529, 1994 ). MR 95a:14023 | Zbl 0841.14019 · Zbl 0841.14019 [7] E. FRIEDLANDER and B. MAZUR , Correspondence homomorphisms for singular varieties (to appear in Ann. Inst. Fourier). Numdam | Zbl 0811.14007 · Zbl 0811.14007 · doi:10.5802/aif.1415 [8] W. FULTON , Intersection Theory (Ergebnisse der Math, Springer-Verlag, 1984 ). MR 85k:14004 | Zbl 0541.14005 · Zbl 0541.14005 [9] A. GROTHENDIECK , Standard Conjectures on algebraic cycles (in Algebraic Geometry, Bombay Colloquium, Oxford, 1969 , pp. 193-199). MR 42 #3088 | Zbl 0201.23301 · Zbl 0201.23301 [10] R. HAIN , Letter to Barry Mazur dated 11/4/90 . [11] S. KLEIMAN , Algebraic cycles and the Weil Conjectures (in Dix Exposés sur la cohomologie des schémas, North Holland, 1968 , pp. 359-386). MR 45 #1920 | Zbl 0198.25902 · Zbl 0198.25902 [12] H. B. LAWSON , Algebraic cycles and homotopy theory (Annals of Math., Vol. 129, 1989 , pp. 253-291). MR 90h:14008 | Zbl 0688.14006 · Zbl 0688.14006 · doi:10.2307/1971448 [13] D. LIEBERMAN , Numerical and homological equivalence of algebraic cycles on Hodge manifolds (Amer. J. Math., Vol. 90, 1968 , pp. 366-374). MR 37 #5898 | Zbl 0159.50501 · Zbl 0159.50501 · doi:10.2307/2373533 [14] P. LIMA-FILHO , Lawson homology for quasi-projective varieties (Compositio Math., Vol. 84, 1992 , pp. 1-23). Numdam | MR 93j:14007 | Zbl 0773.14010 · Zbl 0773.14010 [15] Families of abelian varieties (in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure. Math., Boulder, Col., 1965 , pp. 347-351). Zbl 0199.24601 · Zbl 0199.24601 [16] Algebraic cycles and Hodge theoretic connectivity (Inventiones Math., Vol. 111, 1993 , pp. 349-373). MR 94b:14007 | Zbl 0822.14008 · Zbl 0822.14008 · doi:10.1007/BF01231292 [17] J. ROBERTS , Chow’s moving lemma (in Algebraic Geometry, Oslo, 1970 , F. Oort ed., Wolters-Noordhoff Publ., Groningen, 1972 , pp. 89-96). MR 52 #3154 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.