×

Inequality of Bogomolov-Gieseker type on arithmetic surfaces. (English) Zbl 0854.14012

On an \(n\)-dimensional compact Kähler manifold with a Kähler form \(\Phi\), for any \(\Phi\)-semistable torsion-free sheaf \(E\) of rank \(r\), the geometric Bogomolov-Gieseker inequality is \[ \int_M \left (c_2(E) - {r - 1 \over 2r} c_1 (E)^2 \right) \wedge \Phi^{n - 2} \geq 0; \] in particular, for a semistable vector bundle on an algebraic surface, this inequality gives \(c_1 (E)^2 \leq (\{2r\}/(r - 1)) c_2 (E)\). Miyaoka provided an arithmetic analogue of the above inequality for stable vector bundles on an arithmetic surface. The paper under review obtains this inequality for any semistable vector bundle on an arithmetic surface; more precisely, the author proves the following main theorem: Let \(f : X \to \text{Spec} ({\mathcal O}_K)\) be an arithmetic surface and \((E,h)\) a Hermitian vector bundle on \(X\). If \(E_{\overline \mathbb{Q}}\) is semistable on the geometric generic fibre \(X_{\overline \mathbb{Q}}\) of \(f\), then \[ \widehat c_2 (E,h) - {r - 1 \over 2r} \widehat c_1 (E,h)^2 \geq 0 \] where \(r = \text{rk} (E)\) and \(\widehat c_1 (E,h)\), \(\widehat c_2 (E,h)\) are the arithmetic Chern classes introduced by Gillet and Soule.
After a clever calculation of the secondary Bott-Chern characteristic, the author reduces the theorem to the stable case; then, using Gillet-Soulé’s arithmetic Riemann-Roch theorem, it is enough to prove the main theorem if one has a good estimation for the \(L^2\)-degree of a Hermitian module and analytic torsions, which requires that the vector bundle \(E\) have a Hermitian-Einstein metric. The method is different from Miyaoka’s. [For Miyaoka’s proof, see C. Soulé’s paper: Invent. Math. 116, No. 1-3, 577-599 (1994; Zbl 0834.14013).] The paper under review also contains some other interesting results.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14F45 Topological properties in algebraic geometry
57R20 Characteristic classes and numbers in differential topology

Citations:

Zbl 0834.14013
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections , Acta Math. 114 (1965), 71-112. · Zbl 0148.31906
[2] J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion , Comm. Math. Phys. 115 (1988), no. 1, 49-78. · Zbl 0651.32017
[3] J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle , Comm. Math. Phys. 125 (1989), no. 2, 355-367. · Zbl 0687.32023
[4] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties , Math. USSR-Izv. 13 (1978), 499-555. · Zbl 0439.14002
[5] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri , J. Differential Geom. 18 (1983), no. 2, 269-277. · Zbl 0504.49027
[6] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles , Proc. London Math. Soc. (3) 50 (1985), no. 1, 1-26. · Zbl 0529.53018
[7] G. Faltings, Calculus on arithmetic surfaces , Ann. of Math. (2) 119 (1984), no. 2, 387-424. JSTOR: · Zbl 0559.14005
[8] G. Faltings, Lectures on the arithmetic Riemann-Roch theorem , Annals of Mathematics Studies, vol. 127, Princeton University Press, Princeton, NJ, 1992. · Zbl 0744.14016
[9] D. Gieseker, On a theorem of Bogomolov on Chern classes of stable bundles , Amer. J. Math. 101 (1979), no. 1, 77-85. JSTOR: · Zbl 0431.14005
[10] H. Gillet and C. Soulé, Amplitude arithmétique , C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 17, 887-890. · Zbl 0676.14007
[11] H. Gillet and C. Soulé, Arithmetic intersection theory , Inst. Hautes Études Sci. Publ. Math. (1990), no. 72, 93-174 (1991). · Zbl 0741.14012
[12] 1 H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I , Ann. of Math. (2) 131 (1990), no. 1, 163-203. JSTOR: · Zbl 0715.14018
[13] 2 H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II , Ann. of Math. (2) 131 (1990), no. 2, 205-238. JSTOR: · Zbl 0715.14006
[14] H. Gillet and C. Soulé, An arithmetic Riemann-Roch theorem , Invent. Math. 110 (1992), no. 3, 473-543. · Zbl 0777.14008
[15] D. R. Grayson, Reduction theory using semistability , Comment. Math. Helv. 59 (1984), no. 4, 600-634. · Zbl 0564.20027
[16] P. Hriljac, Heights and Arakelov’s intersection theory , Amer. J. Math. 107 (1985), no. 1, 23-38. JSTOR: · Zbl 0593.14004
[17] S. Kobayashi, Differential geometry of complex vector bundles , Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987. · Zbl 0708.53002
[18] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties , Invent. Math. 113 (1993), no. 1, 177-215. · Zbl 0819.14006
[19] M. Maruyama, Openness of a family of torsion free sheaves , J. Math. Kyoto Univ. 16 (1976), no. 3, 627-637. · Zbl 0404.14004
[20] 1 M. Maruyama, Moduli of stable sheaves. I , J. Math. Kyoto Univ. 17 (1977), no. 1, 91-126. · Zbl 0374.14002
[21] 2 M. Maruyama, Moduli of stable sheaves. II , J. Math. Kyoto Univ. 18 (1978), no. 3, 557-614. · Zbl 0395.14006
[22] S. Mukai and F. Sakai, Maximal subbundles of vector bundles on a curve , Manuscripta Math. 52 (1985), no. 1-3, 251-256. · Zbl 0572.14008
[23] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface , Ann. of Math. (2) 82 (1965), 540-567. JSTOR: · Zbl 0171.04803
[24] D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds , Ann. of Math. (2) 98 (1973), 154-177. JSTOR: · Zbl 0267.32014
[25] C. Soulé, C. Abramovich, J.-F. Burnol, and J. Kramer, Lectures on Arakelov geometry , Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. · Zbl 0812.14015
[26] U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen , Arch. Math. (Basel) 27 (1976), no. 6, 604-610. · Zbl 0338.10024
[27] K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles , Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257-S293. · Zbl 0615.58045
[28] P. Vojta, Siegel’s theorem in the compact case , Ann. of Math. (2) 133 (1991), no. 3, 509-548. JSTOR: · Zbl 0774.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.