×

zbMATH — the first resource for mathematics

On the arithmetic genus of rational curves. (Sur le genre arithmétique des courbes rationnelles.) (French) Zbl 0854.14017
Summary: Harris and Eisenbud found a bound for the genus of curves of degree \(d\) in the projective space \(\mathbb{P}_r\) that are not contained in surfaces of degree less than \(s\) (with \(s<2r-2\)). We give elementary constructions of rational curves with a maximal arithmetic genus for \(s<2r-3\), that is with a maximal singular locus. Our curves have only real ordinary singular points with real tangents. When it is possible they are nodal curves.

MSC:
14H50 Plane and space curves
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] N. A’CAMPO, Sur la première partie du seizième problème de Hilbert, Séminaire Bourbaki, vol. 1978/1979, Lecture Notes in Math., vol 770, Springer (1980). · Zbl 0451.14019
[2] E. BALLICO, F. CATANESE and C. CILIBERTO, Open problems in classification of irregular varieties, 140-146, Lecture Notes in Math. 1515, Springer-Verlag (1992). · Zbl 0781.14016
[3] J. BOCHNAK, M. COSTE et M.-F. ROY, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer (1987). · Zbl 0633.14016
[4] R. BENEDETTI and J.-J. RISLER, Real algebraic and semi-algebraic sets, Actualités Mathématiques, Hermann (1990). · Zbl 0694.14006
[5] M. COSTE, Épaississement d’hypersurfaces algébriques réelles, Proc. Japan Acad., Ser. A. Math. Sci., 68 (1992), 175-180. · Zbl 0788.14051
[6] L. GRUSON et C. PESKINE, Genre des courbes de l’espace projectif (II), Ann. Sci. École Normale Supérieure, 4e série, 15 (1982), 401-418. · Zbl 0517.14007
[7] L. GRUSON et C. PESKINE, Postulation des courbes gauches, in Algebraic geometry open problems, Lecture Notes 987 (1983). · Zbl 0543.14013
[8] D.A. GUDKOV, The topology of real projective algebraic varieties, Russ. Math. Surveys, 29 (4) (1974), 1-79. · Zbl 0316.14018
[9] J. HARRIS (chapter III in collaboration with D. Eisenbud), Curves in projective space, Presses de l’université de Montréal (1982).
[10] R. HARTSHORNE, Genre des courbes algébriques dans l’espace projectif (d’après L. Gruson et C. Peskine), Séminaire Bourbaki n° 592 (1982). · Zbl 0524.14037
[11] R. HARTSHORNE, Une courbe irréductible non lissifiable dans ℙ3, C. R. Acad. Sci. Paris, t. 299 Série I, n° 5 (1984). · Zbl 0591.14021
[12] R. HARTSHORNE and A. HIRSCHOWITZ, Smoothing algebraic space curves, in Week of algebraic geometry, Barcelona 1983, Lecture Notes in Math, Springer-Verlag. · Zbl 0574.14028
[13] H. HIRONAKA, On the arithmetic genera and the effective genera of algebraic curves, Memoirs of the College of Science, University of Kyoto, series A, vol. XXX Math. n° 2 (1957). · Zbl 0099.15702
[14] D. PECKER, Courbes gauches ayant beaucoup de points multiples, C. R. Acad. Sci. Paris, 315, Série I (1992), 561-565. · Zbl 0783.14012
[15] D. PECKER, Simple constructions of algebraic curves with nodes, Composito Math., 87 (1993), 1-4. · Zbl 0783.14013
[16] D. PECKER, Un théorème de Harnack dans l’espace, Bull. Sci. Math, 118 (1994), 475-484. · Zbl 0829.14027
[17] A. TANNENBAUM, Familles of algebraic curves with nodes, Compositio Math., 41 (1980), 107-126. · Zbl 0399.14018
[18] A. TANNENBAUM, On the geometric genera of projective curves, Math. Ann., 240 (3) (1979), 213-221. · Zbl 0385.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.