×

zbMATH — the first resource for mathematics

Note on Frobenius extensions and restricted Lie superalgebras. (English) Zbl 0854.17022
The article under review extends techniques concerning Frobenius extensions in order to study enveloping algebras of restricted Lie superalgebras. The author considers the question when the extension defined by factor algebras of a Frobenius extension \(R:S\) is Frobenius and displays a class of ideals of \(R\) for which this is the case. For restricted Lie superalgebras, he determines, in particular, those whose enveloping algebras are of finite representation type. In contrast to the non-graded case, these algebras are not necessarily serial [cf. J. Feldvoss and H. Strade, Manuscr. Math. 74, 47-67 (1992; Zbl 0756.17008)].

MSC:
17B50 Modular Lie (super)algebras
17B35 Universal enveloping (super)algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bahturin, Y.; Mikhalev, A.; Petrogradsky, V.; Zaicev, M., Infinite dimensional Lie superalgebras, () · Zbl 0970.17011
[2] Bell, A.D.; Farnsteiner, R., On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. amer. math. soc., 335, 407-424, (1993) · Zbl 0811.16013
[3] Bergen, J., A note on smash products over Frobenius algebras, Comm. algebra, 21, 4021-4024, (1993) · Zbl 0805.16036
[4] Bergen, J., Semisimplicity of restricted enveloping algebras of Lie superalgebras, Pacific J. math., 162, 1-11, (1994) · Zbl 0789.17013
[5] Berkson, A.J., The u-algebra of a restricted Lie algebra is Frobenius, (), 14-15 · Zbl 0119.27401
[6] Bondarenko, V.; Drozd, Y., Representation type of finite groups, J. soviet. math., 20, 2515-2528, (1982) · Zbl 0497.16015
[7] Erdmann, K., Blocks of tame representation type and related algebras, () · Zbl 0696.20001
[8] Farnsteiner, R., On the cohomology of ring extensions, Adv. math., 87, 42-70, (1991) · Zbl 0734.16003
[9] Farnsteiner, R., On Frobenius extensions defined by Hopf algebras, J. algebra, 166, 130-141, (1994) · Zbl 0819.16031
[10] Farnsteiner, R., Periodicity and representation type of modular Lie algebras, J. reine angew. math., 464, 47-65, (1995) · Zbl 0823.17025
[11] Farnsteiner, R.; Strade, H., Shapiro’s lemma and its consequences in the cohomology theory of modular Lie algebras, Math. Z., 206, 153-168, (1991) · Zbl 0727.17010
[12] Feldvoss, J., On the cohomology of restricted Lie algebras, Comm. algebra, 19, 2865-2906, (1991) · Zbl 0741.17006
[13] Feldvoss, J.; Strade, H., Restricted Lie algebras with bounded cohomology and related classes of algebras, Manuscripta math., 74, 47-67, (1992) · Zbl 0756.17008
[14] Heller, A., Indecomposable representations and the loop-space operation, (), 640-643 · Zbl 0100.26501
[15] Hirata, K.; Sugano, K., On semisimple extensions and separable extensions over non-commutative rings, J. math. soc. Japan, 18, 360-373, (1966) · Zbl 0178.36802
[16] Hochschild, G.P., Representations of restricted Lie algebras, (), 603-605 · Zbl 0056.03102
[17] Huppert, L., Homological characteristics of pro-uniserial rings, J. algebra, 69, 43-66, (1981) · Zbl 0461.16026
[18] Jans, J.P., The representation type of algebras and subalgebras, Canad. J. math., 10, 39-44, (1957) · Zbl 0101.02504
[19] Nakayama, T.; Tsuzuku, T., On Frobenius extensions, I, Nagoya math. J., 17, 89-110, (1960) · Zbl 0204.05101
[20] Nakayama, T.; Tsuzuku, T., On Frobenius extensions, II, Nagoya math. J., 19, 127-148, (1961) · Zbl 0204.05102
[21] Pareigis, B., Einige bemerkungen über Frobenius-erweiterungen, Math. ann., 153, 1-13, (1964) · Zbl 0122.04005
[22] Pfautsch, W.; Voigt, D., The representation-finite algebraic groups of dimension zero, C.R. acad. sci. Paris, 306, 685-689, (1988) · Zbl 0669.20033
[23] Strade, H.; Farnsteiner, R., Modular Lie algebras and their representations, Marcel dekker monographs, Vol. 116, (1988), New York · Zbl 0648.17003
[24] Voigt, D., The algebraic infinitesimal groups of tame representation type, C.R. acad. sci. Paris, 311, 757-760, (1990) · Zbl 0738.20048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.