×

Modular invariance of characters of vertex operator algebras. (English) Zbl 0854.17034

The author proves modular invariance of the characters of irreducible representations for a vertex operator algebra under certain finiteness conditions. In order to prove the result, an analogue of highest-weight theory in Lie algebras for vertex operator algebras is developed. Moreover, he proves that a vertex operator algebra allows a certain change-of-variables.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
11F22 Relationship to Lie algebras and finite simple groups
17B68 Virasoro and related algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tom M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 41. · Zbl 0332.10017
[2] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068 – 3071. · Zbl 0613.17012
[3] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333 – 380. · Zbl 0661.17013
[4] Peter Bouwknegt and Kareljan Schoutens, \? symmetry in conformal field theory, Phys. Rep. 223 (1993), no. 4, 183 – 276. · Zbl 0943.81042
[5] John L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 270 (1986), no. 2, 186 – 204. · Zbl 0689.17016
[6] C.Dong, Representation of the moonshine module vertex operator algebra, preprint, 1992.
[7] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245 – 265. · Zbl 0807.17022
[8] C.Dong, G.Mason, Y.Zhu, Discrete Series of the Virasoro algebra and the moonshine module, Preprint (1991). · Zbl 0813.17019
[9] Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel\(^{\prime}\)fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197 – 215. · Zbl 0925.17022
[10] I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), no. 2, 301 – 352. · Zbl 0548.17007
[11] E.Frenkel, \(W\)-algebras and Langlands-Drinfeld correspondence, Plenum Press, New York, 1987.
[12] B. L. Feĭgin and D. B. Fuchs, Verma modules over the Virasoro algebra, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 230 – 245.
[13] E.Frenkel, V.Kac, A.Radul, W.Wang, \(W_{1+\infty } \) and \( W( gl_N ) \) with central charge \(N\)., Pre-print (1994).
[14] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. · Zbl 0789.17022
[15] I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function \? as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, , Phys. Sci., 3256 – 3260. · Zbl 0543.20016
[16] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. · Zbl 0674.17001
[17] Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123 – 168. · Zbl 0848.17032
[18] Yi-Zhi Huang, Geometric interpretation of vertex operator algebras, Proc. Nat. Acad. Sci. U.S.A. 88 (1991), no. 22, 9964 – 9968. · Zbl 0810.17019
[19] E.L. Ince, Ordinary Differential Equations, Dover Publications, Inc, New York, 1956, . · Zbl 0063.02971
[20] Itsykson, Zuber, Two-dimensional conformal invariant theories on a torus, Nucl.Phys. B275 (1986), .
[21] V. G. Kac, Infinite-dimensional Lie algebras, and the Dedekind \?-function, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 77 – 78 (Russian).
[22] Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125 – 264. · Zbl 0584.17007
[23] Victor G. Kac and Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), no. 2, 156 – 236. · Zbl 0661.17016
[24] Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. · Zbl 0615.14018
[25] B.Lian, On the classification of simple vert ex operator algebras, preprint (1992).
[26] Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177 – 254. · Zbl 0694.53074
[27] A. Rocha-Caridi, Vacuum vector representations of the Virasoro algebra, Vertex operators in mathematics and physics (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 3, Springer, New York, 1985, pp. 451 – 473.
[28] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459 – 566. · Zbl 0696.17010
[29] Haruo Tsukada, String path integral realization of vertex operator algebras, Mem. Amer. Math. Soc. 91 (1991), no. 444, vi+138. · Zbl 0749.17029
[30] Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. · Zbl 0666.22002
[31] Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197 – 211. · Zbl 0791.17029
[32] Edward Witten, Quantum field theory, Grassmannians, and algebraic curves, Comm. Math. Phys. 113 (1988), no. 4, 529 – 600. · Zbl 0636.22012
[33] Y.Zhu, Global vertex operators on Riemann surfaces, Commun. Math. Phys. 165 No.3 (1994). · Zbl 0819.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.