×

The development and prospects for category theory. (English) Zbl 0854.18002

Summary: This paper is a formulation of my personal opinion of the historical development and the present prospects of category theory.

MSC:

18-03 History of category theory
01A60 History of mathematics in the 20th century
01A65 Development of contemporary mathematics
01A67 Future perspectives in mathematics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artin, E.: Galois Theory, Notre Dame Mathematical Lectures No. 2, 2nd edn, Notre Dame Univ. Press, 1944. · Zbl 0060.04814
[2] Artin, M., Grothendieck, A., and Verdier, J. L.: Th?orie des topos et cohomologie ?tale des sch?mas (SGA 4), Springer Lecture Notes in Math. 269 and 270, 1972; also 305, 1973. · Zbl 0234.00007
[3] BourbakiNicolas: El?ments de math?matique, livre 1, Th?orie des ensembles, Paris, Hermann, 1939.
[4] BrandtH.: ?ber die Komponierbarkeit quatern?rer quadratische Formen, Math. Ann. 94 (1925), 179-197. · JFM 51.0130.11 · doi:10.1007/BF01208654
[5] BungeM.: Topos theory and Souslin’s hypothesis, J. Pure Appl. Alg. 4 (1974), 159-187. · Zbl 0285.02051 · doi:10.1016/0022-4049(74)90020-6
[6] DedekindR.: ?ber die von drei Moduln erzeugete Dualgruppe, Math. Ann. 53 (1900), 371-443. · JFM 31.0211.01 · doi:10.1007/BF01448979
[7] EhresmannCh.: Gattungen von lokalen Structuren, Jahresbericht der Deutschen Math. Vereiningung 60 (1957), 49-73.
[8] EilenbergS. and MacLaneS.: General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.
[9] EilenbergS. and SteenrodN. E.: Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, NJ, 1952.
[10] EilenbergS. and MacLaneS.: Acyclic models, Am. Journ. Math. 75 (1953), 189-199. · Zbl 0050.17205 · doi:10.2307/2372628
[11] EilenbergS. and ZilberJ. A.: Semisimplicial complexes and singular homology, Ann. Math. 51 (1950), 499-513. · Zbl 0036.12601 · doi:10.2307/1969364
[12] GrothendieckA.: Sur quelques points d’alg?bra homologique, Tohoko Math. J. 9 (1957), 119-221.
[13] HilbertD., Grundlagen der Geometrie, 1st edn, B. G. Teubner, Stuttgart, 1989, 12th edn, 1927.
[14] JoyalA. and TierneyM.: Classifying spaces for sheaves of simplicial groupoids, J. Pure Appl. Alg. 89 (1993), 135-161. · Zbl 0784.18005 · doi:10.1016/0022-4049(93)90091-7
[15] KanD. M.: Adjoint functors, Trans. Am. Math Soc. 87 (1958), 294-329. · Zbl 0090.38906 · doi:10.1090/S0002-9947-1958-0131451-0
[16] Kapranov, M. M. and Voevodsky, V. A.: 2-Categories and Zamolodchikov Tetrahedral Equations, Preprint, 1992. · Zbl 0809.18006
[17] KellyG. M. and MacLaneS.: Coherence in closed categories, J. Pure Appl. Alg. 1 (1971), 97-140. · Zbl 0212.35001 · doi:10.1016/0022-4049(71)90013-2
[18] JoyalA. and StreetR.: Braided tensor categories, Advances in Mathematics 102 (1993), 20-78. · Zbl 0817.18007 · doi:10.1006/aima.1993.1055
[19] LambekJ. and ScottP. J. Introduction to Higher Order Categorical Logic, Cambridge Univ. Press, Cambridge, U.K., 1988.
[20] LawvereF. W.: An elementary theory of the category of sets, Proc Nat. Acad. Sci. 52 (1964), 1506-1511. · Zbl 0141.00603 · doi:10.1073/pnas.52.6.1506
[21] LawvereF. W.: Algebraic theories, algebraic categories and algebraic functors, in Theory of Models, Proc. 1963 Internat. Sympos., Berkeley, North-Holland, Amsterdam, 1965, pp. 413-418.
[22] MacLaneS.: Carnap on logical syntax, Bull Amer. Math. Soc. 44 (1938), 171-176. · doi:10.1090/S0002-9904-1938-06694-3
[23] MacLaneS.: Groups, categories and duality, Proc. Nat. Acad. Sci. USA 34 (1938), 263-267.
[24] MacLaneS.: Duality for groups, Bull. Amer. Math. Soc. 56 (1950), 485-516. · Zbl 0045.29905 · doi:10.1090/S0002-9904-1950-09427-0
[25] MacLaneS.: Categories for the Working Mathematician, Springer-Verlag, New York, 1971. · Zbl 0232.18001
[26] MacLaneS.: Concepts and categories in perspective, in PeterDuren (ed.), A Century of Mathematics in America, Part I, Am. Math. Soc., Providence, RI, 1988, pp. 323-366.
[27] MacLaneS.: Coherence theorems and conformal field theory, in Canadian Mathematical Proceedings, Vol. 13, AMS, Providence, RI, 1992, pp. 321-328. · Zbl 0789.18006
[28] MacLaneS. and MoedijkI.: Sheaves in Geometry and Logic; A First Introduction to Topos Theory, Springer-Verlag, New York, 1992.
[29] SamuelPierre: On universal mapping and free topological groups, Bull. Am. Math. Soc. 54 (1948), 591-598. · Zbl 0031.41702 · doi:10.1090/S0002-9904-1948-09052-8
[30] Voreadou, Rodiani: Coherence and commutative diagrams in closed categories, Memoirs Amer. Math. Soc. 9(182) (1977). · Zbl 0347.18008
[31] Voreadou, R.: A coherence theorem for biclosed categories, Eleutheria 103-150, and 156-187, 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.