×

zbMATH — the first resource for mathematics

Collective excitations in the superconducting phase of the one-band Hubbard model. (English. Russian original) Zbl 0854.58048
Theor. Math. Phys. 102, No. 3, 331-335 (1995); translation from Teor. Mat. Fiz. 102, No. 3, 457-462 (1995).
Summary: The method of functional integration is used to investigate the collective excitations in the superconducting state of the one-band two-dimensional Hubbard model with repulsion. The energy spectrum of the Bose modes is obtained. The existence of a branch of Bogolyubov sound is demonstrated. The phase structure and symmetry of the model are also considered.
MSC:
58Z05 Applications of global analysis to the sciences
82D55 Statistical mechanical studies of superconductors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. W. Anderson,Science,285, 1196 (1987). · doi:10.1126/science.235.4793.1196
[2] V. J. Emery,Phys. Rev. Lett.,58, 2794 (1987). · doi:10.1103/PhysRevLett.58.2794
[3] P. W. Anderson, G. Bascaran, Z. Zou, and T. Hsu,Phys. Rev. Lett.,58, 2790 (1987). · doi:10.1103/PhysRevLett.58.2790
[4] V. N. Popov,Phys. Lett. A,164, 387 (1992). · doi:10.1016/0375-9601(92)90567-6
[5] C. Malyshev and V. N. Popov,Phys. Lett. A,175, 69 (1993). · doi:10.1016/0375-9601(93)90856-U
[6] C. Malyshev and V. N. Popov,Zap. Nauchn. Semin. LOMI,199, 147 (1992).
[7] R. T. Scalittar and R. R. P. Singh,Phys. Rev. Lett. B,67, 370 (1991). · doi:10.1103/PhysRevLett.67.370
[8] G. Kotliar,Phys. Rev. B,37, 3664 (1989). · doi:10.1103/PhysRevB.37.3664
[9] I. E. Dzyaloshinskii, A. M. Polyakov, and P. B. Wiegmann,Phys. Lett. A,127, 112 (1988). · doi:10.1016/0375-9601(88)90395-7
[10] P. B. Wiegmann,Phys. Rev. Lett.,60, 821 (1988). · doi:10.1103/PhysRevLett.60.821
[11] A. M. Polyakov,Mod. Phys. Lett. A,3, 325 (1988). · doi:10.1142/S0217732388000398
[12] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii,Methods of Quantum Field Theory in Statistical Physics, Englewood Cliffs (1963). · Zbl 0135.45003
[13] I. E. Dzyaloshinskii,Zh. Eksp. Teor. Fiz.,66, 848 (1987).
[14] I. E. Dzyaloshinskii,Pis’ma Zh. Eksp. Teor. Fiz.,46, 97 (1987).
[15] V. N. Popov,Functional Integrals and Collective Excitations, Cambridge University Press (1990).
[16] M. A. Braun, in:Problems of Theoretical Physics, No. 2 [in Russian], Izd-vo Leningrad University, Leningrad (1975), p. 51.
[17] V. Alonso and V. N. Popov,Zh. Eksp. Teor. Fiz.,77, 1445 (1977).
[18] A. V. Svidzinskii,Teor. Mat. Fiz.,9, 273 (1971).
[19] V. V. Andrianov and V. N. Popov,Teor. Mat. Fiz.,28, 340 (1976).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.