zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A code to calculate (high order) Bessel functions based on the continued fractions method. (English) Zbl 0854.65014
Summary: We have developed a fast code to calculate Bessel functions of integer and fractional order based on the continued fractions method. This algorithm is specially useful in the case of Bessel functions of high order because it does not require any recalculation using normalization relations.

65D20Computation of special functions, construction of tables
33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
Full Text: DOI
[1] Luke, Y. L.: Mathematical functions and their approximations. (1975) · Zbl 0318.33001
[2] Miller, J. C. P.: Bessel functions, part II. Mathematical tables 10 (1952) · Zbl 0049.09409
[3] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1972) · Zbl 0543.33001
[4] Barnett, A. R.; Feng, D. H.; Steed, J. W.; Goldfarb, L. J. B.: Coulomb wave functions for all real ${\eta}$ and \varrho. Comput. phys. Commun. 8, 377 (1974)
[5] Luke, Y. L.: Integrals of Bessel functions. (1962) · Zbl 0106.04301
[6] Watson, C. N.: Theory of Bessel functions. (1962) · Zbl 0133.25905