zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the numerical solution of the direct scattering problem for an open sound-hard arc. (English) Zbl 0854.65106
A boundary integral equation approach is used to solve the (Neumann) boundary value problem for the Helmholtz equation in $\bbfR^2 \setminus \Gamma$ modelling the scattering phenomena for time-harmonic acoustic waves by a sound-hard open arc $\Gamma$. (Such problems arise also in the analysis of cracks.) Using the so-called cosine substitution the integral equation is found to be essentially the same as that for a closed boundary, considered e.g. by {\it R. Kress} [J. Comput. Appl. Math. 61, No. 3, 345-360 (1995; Zbl 0839.65119)]. Hence, the integral equation is solved approximately by a quadrature formula method, and error estimates in Hölder norms are found by standard techniques, cf. {\it S. G. Michlin, S. Prößdorf} [Singuläre Integraloperatoren, Akademie-Verlag Berlin (1980; Zbl 0442.47027)]. A numerical example (bowl-shaped open arc) shows exponential convergence.

65N38Boundary element methods (BVP of PDE)
76Q05Hydro- and aero-acoustics
76M15Boundary element methods (fluid mechanics)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
Full Text: DOI
[1] S. Chandler-Wilde, Private communication (1995).
[2] Colton, D.; Kress, R.: Inverse acoustic and electromagnetic scattering theory. (1992) · Zbl 0760.35053
[3] Hayashi, Y.: The Dirichlet -- problem for the two-dimensional Helmholtz equation for an open boundary. J. math. Anal. appl. 44, 489-530 (1973) · Zbl 0274.35020
[4] Kress, R.: Linear integral equations. (1989) · Zbl 0671.45001
[5] Kress, R.: Inverse scattering from an open arc. Math, methods appl. Sci. 18, 267-293 (1995) · Zbl 0824.35030
[6] Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. comput. Appl. math. 61, No. 3, 345-360 (1995) · Zbl 0839.65119
[7] Kress, R.; Sloan, I. H.: On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numer. math. 66, 199-214 (1993) · Zbl 0791.65089
[8] Krutitskij, P. A.: Dirichlet’s problem for the Helmholtz equation outside cuts in the plane. Comp. maths math. Phys. 34, No. 8/9, 1073-1090 (1994)
[9] Krutitskij, P. A.: Neumann’s problem for the Helmholtz equation outside cuts in the plane. Comp. maths math. Phys. 34, No. 11, 1421-1431 (1994)
[10] Levine, L. M.: A uniqueness theorem for the reduced wave equation. Comm. pure appl. Math. 17, 147-176 (1964) · Zbl 0168.36803
[11] Lewis, P. A.; Wickham, G. R.: The diffraction of SH waves by an arbitrary shaped crack in two dimensions. Phil. trans. Roy. soc. A 340, 503-529 (1992) · Zbl 0788.73027
[12] Michlin, S. G.; Prössdorf, S.: Singular integral operators. (1986)
[13] Martin, P. A.: End-point behaviour of solutions to hypersingular integral equations. Proc. R. Soc. London A 432, 301-320 (1991) · Zbl 0726.45002
[14] Martin, P. A.; Rizzo, F. J.: On boundary integral equations for crack problems. Proc. R. Soc. London A 421, 341-355 (1989) · Zbl 0674.73071
[15] Mönch, L.: Ein quadraturformelverfahren für eine hypersinguläre integralgleichung bei der helmholtzgleichung im R2. Diplomarbeit (1994)
[16] Parson, N. F.; Martin, P. A.: Scattering of water waves by submerged plates using hypersingular integral equations. Appl. ocean res. 14, 313-321 (1992)
[17] Prössdorf, S.; Silbermann, B.: Projektionsverfahren und die näherungsweise lösung singulärer gleichungen. (1977) · Zbl 0364.65044
[18] Prössdorf, S.; Silbermann, B.: Numerical analysis for integral and related operator equations. (1991) · Zbl 0763.65102
[19] Prössdorf, S.; Saranen, J.; Sloan, I. H.: A discret method for the logarithmic-kernel integral equation on an open arc. J. austr. Math. soc., ser. B 34, 401-418 (1993) · Zbl 0782.65159
[20] Stephan, E. P.; Wendland, W. L.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. rational mech. Anal. 112, 363-390 (1990) · Zbl 0725.73091
[21] Yan, Y.; Sloan, I. H.: On integral equations of the fitst-kind with logarithmic kernels. J. integral equations appl. 1, 549-579 (1988) · Zbl 0682.45001
[22] Zakharow, Ye.V.; Khaleyewa, I. V.: Hyper-singular integral equations of the first kind in problems of the diffraction of electromagnetic waves by open surfaces. Comp. maths math. Phys. 33, No. 2, 281-286 (1993)
[23] Zakharov, Ye.V.; Sobyanina, I. V.: One-dimensional integro-differential equations for problems of diffraction by screens. Zh. vychisl. Mat. fiz. 26, No. 4, 632-636 (1986) · Zbl 0603.45015