zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A general theory of hypersurface potentials. (English) Zbl 0855.31004
The author investigates hypersurface potentials with general kernels. Particularly, he proves $$\align \lim_{t\to +0} \int_{\bbfR^{n-1}} \varphi (x) K(x, t)dx &= \gamma \varphi (0)+ \int_{\bbfR^{n-1}} \varphi (x) K(x, 0) dx,\\ \lim \Sb x\to x_0\\ x\in \nu_{x_0} \endSb\ \int_\Sigma \varphi (y) {\partial \over {\partial \nu_{x_0}}} h(x- y) d\sigma_y &= \gamma (x_0) \varphi (x_0)+ \int_\Sigma \varphi (y) {\partial \over {\partial \nu_{x_0}}} h(x_0- y) d\sigma_y, \endalign$$ where $\varphi$ belongs to the Hölder’s class, Lyapunov’s manifold $\Sigma$ is the boundary of a bounded domain, the values $\gamma$ and $\gamma (x_0)$ are defined by the kernels, $\nu_{x_0}$ is the inner normal at the point $x_0\in \Sigma$, $K(x, t)$ and $h(x)$ are kernels of special classes. Potentials of functions of the class $L_p$ and potentials of measures are considered as well.

31B25Boundary behavior of harmonic functions (higher-dimensional)
35B15Almost and pseudo-almost periodic solutions of PDE
Full Text: DOI
[1] S. Agmon,Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, New Jersey (1965). · Zbl 0142.37401
[2] L.Bers-M.Schechter,Elliptic equations, inPartial Differential Equations, Lect. Appl. Math., Vol. III, Interscience Publishers (1957), pp. 131--299.
[3] A. P. Calderon -A. Zygmund,On the existence of certain singular integrals, Acta Math, 88 (1952), pp. 85--139. · Zbl 0047.10201 · doi:10.1007/BF02392130
[4] A. P. Calderon -A. Zygmund,On the singular integrals, Amer. J. Math.,78 (1956), pp. 289--309. · Zbl 0072.11501 · doi:10.2307/2372517
[5] A. Cialdea,Sul problema della derivata obliqua per le funzioni armoniche e questioni connesse, Rend. Accad. Naz. Sc. XL, Mem. Mat.,12 (1988), pp. 181--200.
[6] A. Cialdea,Elastostatics with non absolutely continuous measures, J. Elasticity,23 (1990), pp. 23--51. · Zbl 0723.73023 · doi:10.1007/BF00041683
[7] G. Fichera,Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni, Ann. Mat. Pura Appl. (IV),27 (1948), pp. 1--28. · Zbl 0035.34801 · doi:10.1007/BF02415556
[8] G. Fichera,Una introduzione alla teoria delle equazioni integrali singolari, Rend. Matem. (V),17 (1958), pp. 82--191.
[9] G.Fichera,Approssimazione uniforme delle funzioni olomorfe mediante funzioni razionali aventi poli semplici prefissati Nota I e II, Rend. Acc. Lincei (1959), 193--201, 317--323. · Zbl 0090.28403
[10] G.Fichera,Linear elliptic equations of higher order in two independent variables and singular integral equations, with application to anisotropic inhomogeneous elasticity, in:Partial Differential Equations and Continuum Mechanics, R. E.Langer (editor), Madison (1961), pp. 55--80.
[11] G. Fichera -L. de Vito,Funzioni analitiche di una variabile complessa, III Ediz., Veschi, Roma (1971).
[12] G. Fichera -P. E. Ricci,The single layer potential approach in the theory of boundary value problems for elliptic equations, in:Function Theoretic Methods for Part. Diff. Equat., Lecture Notes in Mathem.,561 (Springer-Verlag, Berlin, Heidelberg, New York (1976), pp. 40--50.
[13] G. Hsiao -R. C. Maccamy,Solution of boundary value problems by integral equations of the first kind, SIAM Review,15,1 (1973), pp. 687--705. · Zbl 0265.45009 · doi:10.1137/1015093
[14] V. D. Kupradze (Editor),Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam (1979).
[15] C. B. Morrey,Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York (1966). · Zbl 0142.38701
[16] W. L., Wendland,Elliptic Systems in the Plane, Pitman, London (1979). · Zbl 0396.35001