Thayer, Edward C. Higher-genus Chen-Gackstatter surfaces and the Weierstrass representation for surfaces of infinite genus. (English) Zbl 0855.53006 Exp. Math. 4, No. 1, 29-39 (1995). In 1982 B.-Y. Chen and F. Gackstatter constructed two complete minimal surfaces of finite total curvature with genera one and two, each having one Enneper-type end and all the symmetries of Enneper’s surface. The present author combines extensions of Karcher for examples with higher symmetry order and of Chen and Gackstatter for a genus 3 example, and produces the Weierstrass data for a countable collection of surfaces \(M_{p, k}\), where \(p\geq 0\) and \(k\geq 2\) are integers. \(M_{p, k}\) has genus \(p(k- 1)\) and the symmetry of a \(k\)-order Enneper surface and thus is, roughly speaking, an Enneper surface in which \(p\) handles of order \(k\) are inserted along a vertical axis.With the increasing number of handles the period problem becomes increasingly complex. For \(p\in \{1, 2\}\) the period problems can be solved by intermediate value arguments, but for \(p> 2\) numerical methods must be employed. The present author succeeds in solving the period problem numerically with a simplex method for up to \(p= 34\) handles. He shows that his surfaces \(M_{p, k}\) approximate generalized Scherk towers of order \(k\) for the limit \(p\to \infty\). Reviewer: K.Polthier (Berlin) Cited in 1 ReviewCited in 2 Documents MSC: 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature Keywords:Weierstrass representation; minimal surfaces; finite total curvature; period problem × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS References: [1] Blo{\(\beta\)} D., Ph.D. thesis, in: ”Elliptische Funktionen und vollständige Minimalflächen’ (1989) · Zbl 0708.53007 [2] Chen C. C., Math. Ann. 259 pp 359– (1982) · Zbl 0468.53008 · doi:10.1007/BF01456948 [3] Callahan M., Inventiones Math. 99 pp 455– (1990) · Zbl 0695.53005 · doi:10.1007/BF01234428 [4] do Espírito Santo N., Ph.D. thesis, in: ”Superfícies mínimas completas em R com fim de tipo Enneper’ (1993) [5] Gackstatter F., Arch. Rational Mech. Anal. 61 pp 141– (1976) · Zbl 0328.53002 · doi:10.1007/BF00249702 [6] Heins M., Annals of Math. 55 pp 296– (1952) · Zbl 0046.08702 · doi:10.2307/1969780 [7] Hoffman D., Global Analysis and Modern Mathematics pp 119– (1993) [8] Hoffman D., J. Diff. Geom. 21 pp 109– (1985) [9] Hoffman D., Duke J. Math. 57 pp 877– (1988) · Zbl 0676.53006 · doi:10.1215/S0012-7094-88-05739-0 [10] Hoffman D., J. Amer. Math. Soc. pp 667– (1989) · doi:10.1090/S0894-0347-1989-1002088-X [11] Hoffman D., Annals of Math. 131 (1990) [12] Hoffman D., Math. Reviews (1982) [13] Hoffman D., ”Limiting behavior of classical periodic minimal surfaces’ [14] Jorge L., Topology 22 pp 203– (1983) · Zbl 0517.53008 · doi:10.1016/0040-9383(83)90032-0 [15] Karcher H., Manuscripta Math. 62 pp 83– (1988) · Zbl 0658.53006 · doi:10.1007/BF01258269 [16] Karcher H., Surveys in Geometry (1989) [17] Kusner R., Bull. Amer. Math. Soc. 17 pp 291– (1987) · Zbl 0634.53004 · doi:10.1090/S0273-0979-1987-15564-9 [18] Lopez F. J., Trans. Amer. Math. Soc. 334 pp 49– (1992) · Zbl 0771.53005 · doi:10.2307/2153972 [19] Meeks W. H., Comment. Math. Helv. 65 pp 255– (1990) · Zbl 0713.53008 · doi:10.1007/BF02566606 [20] Meeks W. H., Comment. Math. Helv. 68 pp 538– (1993) · Zbl 0807.53049 · doi:10.1007/BF02565835 [21] Nelder J. A., Computer J. pp 308– (1965) [22] Osserman R., Duke J. of Math. 32 pp 565– (1965) · Zbl 0152.19903 · doi:10.1215/S0012-7094-65-03260-6 [23] Osserman R., A Survey of Minimal Surfaces,, 2. ed. (1986) · Zbl 0209.52901 [24] Press W., Numerical Recipes (1986) · Zbl 0587.65005 [25] Scherk H. F., J. reine angew. Math. 13 pp 185– (1835) · ERAM 013.0481cj · doi:10.1515/crll.1835.13.185 [26] Schoen R., J. Diff. Geom. 18 pp 791– (1983) · Zbl 0575.53037 · doi:10.4310/jdg/1214438183 [27] Traizet M., ”New triply periodic minimal surfaces’ · Zbl 0845.53009 [28] Wohlgemuth M., Ph.D. thesis, in: ”Vollständige Minimalflächen höheren Geschlechts und endlicher Totalkrümmung’ (1993) · Zbl 0834.53014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.