Peszyńska, Małgorzata Finite element approximation of diffusion equations with convolution terms. (English) Zbl 0855.76041 Math. Comput. 65, No. 215, 1019-1037 (1996). Summary: Approximation of solutions to diffusion equations with memory represented by convolution integral terms is considered. Such problems arise from modeling of flows in fissured media. Convergence of the method is proved, and results of numerical experiments confirming the theoretical results are presented. The advantages of implementation of the algorithm in a multiprocessing environment are discussed. Cited in 9 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76R50 Diffusion 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Keywords:convergence; diffusion equations with memory; flows in fissured media; multiprocessing environment PDF BibTeX XML Cite \textit{M. Peszyńska}, Math. Comput. 65, No. 215, 1019--1037 (1996; Zbl 0855.76041) Full Text: DOI OpenURL References: [1] Todd Arbogast, Analysis of the simulation of single phase flow through a naturally fractured reservoir, SIAM J. Numer. Anal. 26 (1989), no. 1, 12 – 29. · Zbl 0668.76130 [2] T. Arbogast, J. Douglas (Jr.), Dual–Porosity Models for Flow in Naturally Fractured Reservoirs, In “Dynamics of Fluids in Hierarchical Porous Media,” J. H. Cushman, ed., Academic Press, London, 1990, 177–221. [3] Todd Arbogast, Jim Douglas Jr., and Ulrich Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), no. 4, 823 – 836. · Zbl 0698.76106 [4] Xiao-Chuan Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math. 60 (1991), no. 1, 41 – 61. · Zbl 0737.65078 [5] Xiao-Chuan Cai, William D. Gropp, and David E. Keyes, Convergence rate estimate for a domain decomposition method, Numer. Math. 61 (1992), no. 2, 153 – 169. · Zbl 0727.65105 [6] C. Chen, V. Thomée, and L. B. Wahlbin, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp. 58 (1992), no. 198, 587 – 602. · Zbl 0766.65120 [7] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058 [8] M. Dryja, O. Widlund, An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions, Technical Report 339, Department of Computer Science, Courant Institute of Mathematical Sciences, New York, December 1987. [9] M. Dryja, O.B. Widlund, Some Domain Decomposition Algorithms for Elliptic Problems, in: Iterative Methods for Large Linear Systems, Academic Press, 1990. CMP 90:07 · Zbl 0719.65084 [10] Domain Decomposition Methods for Partial Differential Equations, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux eds., Paris, France, January, 1987, SIAM, Philadelphia, 1988. [11] A. Greenbaum, Congming Li, Han Zheng Cao, Parallelizing Preconditioned Conjugate Gradient Algorithms, Technical Report, Courant Institute, 1988. · Zbl 0798.65040 [12] G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. · Zbl 0695.45002 [13] K.H. Hoffmann, J. Zou, Parallel efficiency of domain decomposition methods, Parallel Computing 19 (1993), 1375-1392. · Zbl 0797.68004 [14] Ulrich Hornung and Ralph E. Showalter, Diffusion models for fractured media, J. Math. Anal. Appl. 147 (1990), no. 1, 69 – 80. · Zbl 0703.76080 [15] Yan Ping Lin, Vidar Thomée, and Lars B. Wahlbin, Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations, SIAM J. Numer. Anal. 28 (1991), no. 4, 1047 – 1070. · Zbl 0728.65117 [16] Peter Linz, Analytical and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. · Zbl 0566.65094 [17] C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129 – 145. , https://doi.org/10.1007/BF01398686 C. Lubich, Convolution quadrature and discretized operational calculus. II, Numer. Math. 52 (1988), no. 4, 413 – 425. · Zbl 0643.65094 [18] R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1 – 37. · Zbl 0274.45012 [19] Maria Luisa Mascarenhas, A linear homogenization problem with time dependent coefficient, Trans. Amer. Math. Soc. 281 (1984), no. 1, 179 – 195. · Zbl 0536.45003 [20] V. McLean, V. Thomée, L.B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive type memory term, Applied Mathematics Report AMRR 93.18, December 1993 School of Math., The University of New South Wales. · Zbl 0858.65143 [21] R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl. 66 (1978), no. 2, 313 – 332. · Zbl 0391.45012 [22] Beny Neta, Numerical solution of a nonlinear integro-differential equation, J. Math. Anal. Appl. 89 (1982), no. 2, 598 – 611. · Zbl 0488.65074 [23] Jace W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29 (1971), 187 – 204. · Zbl 0227.73011 [24] A. K. Pani, V. Thomée, and L. B. Wahlbin, Numerical methods for hyperbolic and parabolic integro-differential equations, J. Integral Equations Appl. 4 (1992), no. 4, 533 – 584. · Zbl 0764.65086 [25] M. Peszyńska, Fluid Flow Through Fissured Media. Mathematical Analysis and Numerical Approach, Ph. D. Thesis (1992), University of Augsburg. [26] M. Peszyńska, Finite element approximation of a model of nonisothermal flow through fissured media, in: Finite Element Methods, M. K[?^?]ri[?^?]zek, P. Neittaanmäki, R. Stenberg , Marcel Dekker, 1994, 357–366. [27] M. Peszyńska, On a model for nonisothermal flow in fissured media, Differential Integral Equations 8 (1995), 1497–1516. CMP 95:12 [28] Małgorzata Peszyńska, Analysis of an integro-differential equation arising from modelling of flows with fading memory through fissured media, J. Partial Differential Equations 8 (1995), no. 2, 159 – 173. · Zbl 0836.35061 [29] Albert H. Schatz, Vidar Thomée, and Wolfgang L. Wendland, Mathematical theory of finite and boundary element methods, DMV Seminar, vol. 15, Birkhäuser Verlag, Basel, 1990. · Zbl 0701.00028 [30] Ralph E. Showalter, Distributed microstructure models of porous media, Flow in porous media (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 114, Birkhäuser, Basel, 1993, pp. 155 – 163. · Zbl 0805.76082 [31] I. H. Sloan and V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), no. 5, 1052 – 1061. · Zbl 0608.65096 [32] Luc Tartar, Nonlocal effects induced by homogenization, Partial differential equations and the calculus of variations, Vol. II, Progr. Nonlinear Differential Equations Appl., vol. 2, Birkhäuser Boston, Boston, MA, 1989, pp. 925 – 938. · Zbl 0682.35028 [33] Luc Tartar, Memory effects and homogenization, Arch. Rational Mech. Anal. 111 (1990), no. 2, 121 – 133. · Zbl 0725.45012 [34] V. Thomée, L. B. Wahlbin, Long time numerical solution of a parabolic equation with memory, Dept. of Math, Chalmers University of Technology, The University of Göteborg, Preprint No 1992-12/ISSN 0347-2809 · Zbl 0801.65135 [35] Mary Fanett Wheeler, A priori \?\(_{2}\) error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723 – 759. · Zbl 0232.35060 [36] Nai Ying Zhang, On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type, Math. Comp. 60 (1993), no. 201, 133 – 166. · Zbl 0795.65098 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.