GowriSankaran, K. (ed.); Bliedtner, J. (ed.); Feyel, D. (ed.); Goldstein, M. (ed.); Hayman, W. K. (ed.); Netuka, I. (ed.) Classical and modern potential theory and applications. Proceedings of the NATO advanced research workshop, Chateau de Bonas, France, July 25–31, 1993. (English) Zbl 0856.00022 NATO ASI Series. Series C. Mathematical and Physical Sciences. 430. Dordrecht: Kluwer Academic Publishers. xiv, 470 p. (1994). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Adams, D. R., Nonlinear PDE and the Wiener test, 1-9 [Zbl 0869.31008]Akin, Ömer, \(k\)-superharmonic functions and L. Kelvin’s theorem, 11-17 [Zbl 0868.31007]Akin, Ömer; Leutwiler, Heinz, On the invariance of the solutions of the Weinstein equation under Möbius transformations, 19-29 [Zbl 0869.31005]Armitage, D. H., Radial limiting behaviour of harmonic and superharmonic functions, 31-40 [Zbl 0866.31005]Bauer, Jürgen, Multiparameter processes associated with Ornstein-Uhlenbeck semigroups, 41-55 [Zbl 0871.31006]Bendikov, A. D., On the problem of hypoellipticity on the infinite dimensional torus, 57-59 [Zbl 0871.31005]Bertin, E. M. J., The Monge-Ampère equation in a Banach space, 61-75 [Zbl 0866.31007]Beznea, Lucian; Boboc, Nicu, Excessive functions and excessive measures: Hunt’s theorem on balayages, quasi-continuity, 77-92 [Zbl 0864.31009]Biroli, M., The Wiener test for Poincaré-Dirichlet forms, 93-104 [Zbl 0869.31011]Bliedtner, Jürgen; Loeb, Peter A., The best approach for boundary limits, 105-112 [Zbl 0872.31002]Boboc, Nicu, Fine behaviour of balayages in potential theory, 113-123 [Zbl 0866.31008]Bouleau, Nicolas, Some results about sequential integration on Wiener space, 125-132 [Zbl 0867.31009]Burgeth, Bernhard, Schwarz lemma type inequalities for harmonic functions in the ball, 133-147 [Zbl 0870.31004]Eriksson-Bique, S.-L., Duality of \(H\)-cones, 149-157 [Zbl 0864.31008]Feyel, D., Regularity and integrability of Wiener functionals, 159-164 [Zbl 0868.46035]Fuglede, Bent, Poincaré inequalities in \(L^1\)-norm for the sphere and a strong isoperimetric inequality in \(\mathbb{R}^n\), 165-183 [Zbl 0912.31002]Gardiner, Stephen J., Uniform and tangential harmonic approximation, 185-198 [Zbl 0867.31007]Glover, Joseph; Rao, Murali, Inversion and reflecting Brownian motion, 199-215 [Zbl 0873.60053]Glover, Joseph; Rao, Murali; Šikić, Hrvoje; Song, Renming, \(\Gamma\)-potentials, 217-232 [Zbl 0873.60052]GowriSankaran, Kohur, Fatou-Doob limits and the best filters, 233-236 [Zbl 0870.31010]Grigor’yan, A., Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold, 237-252 [Zbl 0885.58088]Hall, R. R.; Hayman, W. K., Integrals of analytic functions along 2 curves, 253-265 [Zbl 0871.31002]Hansen, W.; Nadirashvili, N., On the restricted mean value property for measurable functions, 267-271 [Zbl 0863.31011]Hengartner, Walter; Rostand, Jérémie, A constructive method for univalent logharmonic mappings, 273-291 [Zbl 0871.31009]Janssen, K.; Müller, H.-H., Choquet-type integral representation of polyexcessive functions, 293-314 [Zbl 0871.31010]Loeb, Peter A.; Osswald, Horst, Refining the local uniform convergence topology, 315-316 [Zbl 0870.31011]Murazawa, Tadashi, Convergence property and superharmonic functions on balayage spaces, 353-357 [Zbl 0870.31018]Netuka, Ivan; Veselý, Jiří, Mean value property and harmonic functions, 359-398 [Zbl 0863.31012]Perez-Gonzalez, Fernando; Trujillo-Gonzalez, Rodrigo, Farrell and Mergelyan sets for the space of bounded harmonic functions, 399-412 [Zbl 0871.31004]de La Pradelle, Arnaud, Analytical methods in infinite dimension, 413-417 [Zbl 0863.31014]Song, Shiqi, Construction of a two parameter process from a one parameter semigroup, 419-451 [Zbl 0864.31005]Wu, Jang-Mei, Capacities and harmonic measures for uniformly elliptic operators of nondivergence form, 453-459 [Zbl 0869.31010] Cited in 1 Document MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 31-06 Proceedings, conferences, collections, etc. pertaining to potential theory 30-06 Proceedings, conferences, collections, etc. pertaining to functions of a complex variable Keywords:Classical potential theory; Modern potential theory; Potential theory; Proceedings; Workshop; NATO; Chateau de Bonas (France) PDF BibTeX XML Cite \textit{K. GowriSankaran} (ed.) et al., Classical and modern potential theory and applications. Proceedings of the NATO advanced research workshop, Chateau de Bonas, France, July 25--31, 1993. Dordrecht: Kluwer Academic Publishers (1994; Zbl 0856.00022)