Massias, Jean-Pierre; Robin, Guy Effective bounds for certain functions concerning prime numbers. (Bornes effectives pour certaines fonctions concernant les nombres premiers.) (French) Zbl 0856.11043 J. Théor. Nombres Bordx. 8, No. 1, 215-242 (1996). Let \(p_k\) be the \(k\)-th prime number and let \(\theta(p_k)= \sum^k_{i=1}\log p_i\). The authors obtain new estimates and improvements of the bounds given by Rosser and Schoenfeld, Schoenfeld, and Robin for the functions \(p_k\), \(\theta(p_k)\), \(S_k= \sum^k_{i=1}p_i\) and \(S(\chi)=\sum_{p\leq x}p\). The estimates are obtained by using methods based on the Stieltjes integral and by direct calculation for small values. Reviewer: W.E.Briggs (Boulder) Cited in 3 ReviewsCited in 14 Documents MSC: 11N25 Distribution of integers with specified multiplicative constraints 11N56 Rate of growth of arithmetic functions Keywords:effective bounds; primes; sums of primes PDF BibTeX XML Cite \textit{J.-P. Massias} and \textit{G. Robin}, J. Théor. Nombres Bordx. 8, No. 1, 215--242 (1996; Zbl 0856.11043) Full Text: DOI Numdam EuDML EMIS OpenURL Online Encyclopedia of Integer Sequences: Numerators of coefficients in a formula for the n-th composite number. References: [1] Cipolla, M., La determinazione assintotica dell nimo numero primo, Rend. Acad. Sci. Fis. Mat. Napoli, Ser. 3, 8 (1902), 132-166. · JFM 33.0214.04 [2] Massias, J.-P., Ordre maximum d’un élément du groupe symétrique et applications (1985), Thèse de 3ème cycle, Limoges, France. [3] Massias, J.-P., Majoration explicite de l’ordre maximum d’un élément du groupe symétrique, Ann. Fac. Sci. Toulouse Math.6 (1984), 269-280. · Zbl 0574.10043 [4] Massias, J.-P., Nicolas, J.-L., Robin, G., Evaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique, Acta ArithmeticaL (1988), 221-242. · Zbl 0588.10049 [5] Massias, J.-P., Nicolas, J.-L., Robin, G., Effective Bounds for the maximal order of an element in the symmetric group, Math. of Comp.53 (1989), 665-678. · Zbl 0675.10028 [6] Pereira, C., Estimates for the Chebyshev Function ψ(x) - θ(x), Math of Comp44 (1985), 211-221. · Zbl 0564.10004 [7] Robin, G., Estimation de la fonction de Tchebycheff θ sur le k-ième nombre premier et grandes valeurs de la fonction w(n), nombre de diviseurs premiers de n, Acta ArithmeticaXLII (1983), 367-389. · Zbl 0475.10034 [8] Robin, G., Permanence de relations de récurrence dans certains développements asymptotiques, Pub. Inst. Math. Beograd tome43, (57), (1988), 17-25. · Zbl 0655.10040 [9] Rosser, J.B., The n-th prime is greather than n log n, Proc. London Math. Soc. (2) 45 (1939), 21-44. · JFM 64.0100.04 [10] Rosser, J.B., Explicit bounds for some functions of prime numbers, Amer. J. Math.63 (1941), 211-232. · JFM 67.0129.03 [11] Rosser, J.B., Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois Journ. Math.6 (1962), 64-94. · Zbl 0122.05001 [12] Rosser, J.B., Schoenfeld, L., Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. of Comp.29 (1975), 243-269. · Zbl 0295.10036 [13] Schoenfeld, L., Sharper bounds for the Chebyshev functions θ(x) and ψ(x), II, Math. of Comp.30 (1976), 337-360. · Zbl 0326.10037 [14] Valiant, L.G., Paterson, M.S., Deterministic one counter automata, Journal of Computer and System Sciences10 (1975), 340-350. · Zbl 0307.68038 [15] Vitanyi, P.M.B., On the size of DOL languages. L. Systems, Third Open House, Comput. Sci. Dept. Aarhus Univ., Aarhus, 1974, , vol. 15, Springer, Berlin, 1974, pp. 78-92, 327-338. · Zbl 0293.68062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.