×

Analytic discs attached to a generating CR-manifold. (English) Zbl 0856.32012

The author gives a complete finite-dimensional parametrization of perturbations by analytic discs with their boundaries kept in a generating CR-fibration \(\{M (\xi) \}_{\xi \in \partial D}\), \(M (\xi) \subset \mathbb{C}^{m + n}\) over the unit circle \(\partial D\), under the condition that the partial indices of the original path are all greater than or equal to \(-1\). Here CR-bundle means that each fiber is a real vector subspace of CR-dimension \(m\), and “generating” means that each fiber is a generating subspace of \(\mathbb{C}^{m + n}\). This is a generalization of results by Globevnik and other people (including the author himself) in case when the boundaries are kept in a maximal real submanifold of \(\mathbb{C}^n\), which corresponds to \(m = 0\) in the above. This problem has applications such as the determination of the polynomial hull or the extension of CR-functions. Some geometric properties of the perturbations are discussed, e.g. the dimension of the subspaces of cotangent vectors of the perturbations conormal to the original fibers is shown to be constant along the circle.

MSC:

32V05 CR structures, CR operators, and generalizations
32V99 CR manifolds
32D10 Envelopes of holomorphy
32C25 Analytic subsets and submanifolds
Full Text: DOI

References:

[1] [A]Alexander, H., Hulls of deformations in Cn,Trans. Amer. Math. Soc. 266 (1981), 243–257. · Zbl 0493.32017
[2] [BRT]Baouendi, M. S., Rothschild, L. P. andTrepreau, J.-M., On the geometry of analytic discs attached to real manifolds,Preprint.
[3] [B1]Bedford, E., Stability of the polynomial hull ofT 2 Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1982), 311–315.
[4] [B2]Bedford, E., Levi flat hypersurfaces inC 2 with prescribed boundary: Stability,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9 (1982), 529–570.
[5] [BG]Bedford, E. andGaveau, B., Envelopes of holomorphy of certain two-spheres in C2,Amer. J. Math. 105 (1983), 975–1009. · doi:10.2307/2374301
[6] [BP]Boggess, A. andPolking, J. C., Holomorphic extension of CR-functions,Duke Math. J. 49 (1982), 757–784. · Zbl 0506.32003 · doi:10.1215/S0012-7094-82-04938-9
[7] [BT]Bott, R. andTu, L. W.,Differential Forms in Algebraic Topology, Graduate Texts in Math.52, Springer-Verlag, New York, 1982.
[8] [Ca]Cartan, H.,Calcul différentiel, Hermann, Paris, 1967.
[9] [Če]Černe, M., Ph.D. Thesis, Madison, Wis., 1994.
[10] [Či]Čirka, E. M., Regularity of boundaries of analytic sets,Mat. Sb. 117 (1982), 291–334 (Russian). English transl.:Math. USSR-Sb. 45 (1983), 291–336.
[11] [CG]Clancey, K. andGohberg, I. Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981.
[12] [E]Eliashberg, Ya., Filling by holomorphic discs, inGeometry of Low-dimensional Manifolds 2 (Donaldson, S. K. and Thomas, C. B., eds.), London Math. Soc. Lecture Note Ser.151 pp. 45–67, Cambridge Univ. Press, Cambridge, 1990.
[13] [Fe]Federer, H.,Geometric Measure Theory, Springer-Verlag, New York, 1969. · Zbl 0176.00801
[14] [Fo1]Forstnerič, F., Analytic disks with boundaries in a maximal real submanifold of C2,Ann. Inst. Fourier (Grenoble) 37 (1987), 1–44.
[15] [Fo2]Forstnerič, F., Polynomial hulls of sets fibered over the circle,Indiana Univ. Math. J. 37, (1988), 869–889. · Zbl 0647.32017 · doi:10.1512/iumj.1988.37.37042
[16] [Gl1]Globevnik, J. Perturbation by analytic discs along maximal real submanifold of Cn,Math. Z. 217 (1994), 287–316. · Zbl 0806.58044 · doi:10.1007/BF02571946
[17] [Gl2]Globevnik, J., Perturbing analytic discs attached to maximal real submanifolds of Cn,Preprint.
[18] [Go]Golusin, G. M.,Geometrische Funktionentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1957.
[19] [Gr]Gromov, M., Pseudo-holomorphic curves in symplectic manifolds,Invent. Math. 81 (1985), 307–347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[20] [K]Krantz, S.,Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982. · Zbl 0471.32008
[21] [L]Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule,Bull. Soc. Math. France 109 (1981), 427–474.
[22] [O1]Oh, Y.-G. The Fredholm-regularity and realization of the Riemann-Hilbert problem and application to the perturbation theory of analytic discs,Preprint.
[23] [O2]Oh, Y.-G., Fredholm theory of holomorphic discs with Lagrangian or totally real boundary conditions under the perturbation of boundary conditions,Preprint.
[24] [T]Tumanov, A. E., Extension of CR-functions into a wedge from a manifold of finite type,Mat. Sb. 136 (1988), 128–139 (Russian). English transl.:Math USSR-Sb. 64 (1989), 129–140.
[25] [V1]Vekua, N. P.,Systems of Singular Integral Equations, Nordhoff, Groningen, 1967.
[26] [V2]Vekua, N. P.,Systems of Singular Integral Equations 2nd ed., Nauka, Moscow, 1970 (Russian).
[27] [W]Webster, S. M., On the reflection principle in several complex variables,Proc. Amer. Math. Soc.,71 (1978), 26–28. · Zbl 0626.32019 · doi:10.1090/S0002-9939-1978-0477138-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.